勾股定理的证明方法
“勾股定理的证明方法”相关的资料有哪些?“勾股定理的证明方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“勾股定理的证明方法”相关范文大全或资料大全,欢迎大家分享。
勾股定理的证明方法
篇一:勾股定理16种证明方法
勾股定理的证明(看前5个就可以了)
【证法1】(课本的证明)
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即
11
a2?b2?4?ab?c2?4?ab
22, 整理得 a2?b2?c2.
【证法2】(邹元治证明)
以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积
1ab
等于2. 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、
C三点在一条直线上,C、G、D三点在一条直线上.
∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF.
∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o.
∴ 四边形EFGH是一个边长为c的 正方形. 它的面积等于c2.
∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA.
∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o,
∴ ∠D
学位论文-—勾股定理的无字证明勾股定理16种证明方法
勾股定理的证明
【证法1】(课本的证明)
abba aaca a cbc ab bcb cbbca a abb做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即
11a2?b2?4?ab?c2?4?ab22, 整理得 a2?b2?c2.
【证法2】(邹元治证明)
以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积
1ab2等于. 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、
C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, GDb∴ ∠AHE = ∠BEF.
a∵ ∠AEH + ∠AHE = 90o, c∴ ∠AEH + ∠BEF = 90o. H∴ ∠HEF = 180o―90o= 90o.
c∴ 四边形EFGH是一个边长为c的 b正方形. 它的面积等于c2.
a∵ RtΔGDH ≌ RtΔHAE, AE∴ ∠HGD = ∠EHA.
∵ ∠HGD + ∠GHD = 9
勾股定理的十六种证明方法大学论文
勾股定理的十六种证明方法
【证法1】
此主题相关图片如下:
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 a^2+b^2+4*(ab/2)=c^2+4*(ab/2) 整理得到:a^2+b^2=c^2。 【证法2】
以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 ab/2. 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.
∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF. ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH是一个边长为c的
正方形. 它的面积等于c^2. ∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GH
运用勾股定理证明与计算
勾股定理
学习目标
掌握勾股定理,会用面积法证明勾股定理。
导学过程
一、 忆一忆
A1、直角△ABC的主要性质是:∠C=90°(用几何语言表示)
D(1)两锐角之间的关系:
(2)若D为斜边中点,则斜边中线是
C(3)若∠B=30°,则∠B的对边和斜边的关系是: 二、学一学 1、(1)、画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。 (2)、再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长
B问题:你是否发现32+42与52,52+122和132的关系,即32+4252,52+122132,
命题1:如果直角三角形的两直角边分别为a、b,斜边为c,那么。
三、合作探究:
方法1、已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
求证: a2?b2?c2 证明:4S△+S小正=S大正
accbbaaabca
c bc根据的等量关系:由此我们得出勾股定理
ab的内容是
方法2、已知:在△ABC中,∠C=90°,∠A、∠B、 ∠C的对边为a、b、c。 求证:a2+b2=c2。
AD a根据如图所示,利用面积法证明勾股定理 b
cEcBbCaabcbabDCbAcaB
四、练一练:
正弦定理的证明方法
篇一:正弦定理的几种证明
正弦定理的几种证明
内蒙古赤峰建筑工程学校 迟冰 邮编(024400)
正弦定理是解决斜三角形问题及其应用问题(测量)的重要定理,而证明它们的方法很多,展开的思维空间很大,研究它们的证明,有利于培养学生的探索精神,体验数学的探索活动过程,也有利于教师根据不同的教学质量要求和学次,进行适当的选择。
正弦定理的内容:
在?ABC中的三边和三角分别是
a
sinA=b
sinB=c
sinC:a,b,c和A,B,C则:
一向量法
证明:在?ABC中做单位向量
i?AB?i?(AC?CB)
|sinA?|i||CB|sinCi
⊥AC,,则:?c
sinC
a
sinA?
:bsinBa
sinA?b
sinB?c
sinC 同理可证:即正弦定理可证
证明:在?ABC中做高线CD,
则在Rt?ADC和Rt?BDC中
CD=bsinA,
CD=asinB
即bsinA=asinB
a
sinA=b
sinB,同理可证:ac
sinA=sinC,
即正弦定理可证
三外接圆法
证明:做
?ABC的外接圆O,过点C连接圆心与圆交于点设圆的半径为R
∴?CAD为Rt?,且b?RsinD,且a∠D?∠B
∴b?2RsinB,即b
sinB?2R
同理:ac
sinA?2R,sinC?2R
∴ac
sinA?b
si
余弦定理的证明方法
篇一:余弦定理的六种证法
余弦定理的六种证法
法一(平面几何):在△ABC中,已知AC
?b,BC?a,及?C,求c。
过A作AD?BC于D,是AD=ACsinC?BCsinC,
CD?ACcos?bcosc,
C
在Rt?ABD中,AB2?AD2?BD2?(bsinc)2?(a?bcosc)2?a2?b2?2abcosc,
法二(平面向量):
????????????????????????????2????????????2????2????????AB?AB?(AC?BC)?(AC?BC)?AC?2AC?BC?BC?AC?2|AC|?|BC| ????2
22222
cos(180?B)?BC?b?2abcosB?a,即:c?a?b?2abcosc
?
法三(解析几何):把顶点C置于原点,CA落在x轴的正半轴上,由于△ABC的AC=b,
CB=a,AB=c,则A,B,C点的坐标分别为A(b,0),B(acosC,asinC),C(0,0).
|AB|2=(acosC-b)2+(asinC-0)2=a2cos2C-2abcosC+b2+a2sin2C=a2+b2-2abcosC,即c2=a2+b2-2abcosC.
法四(利用正弦定理):
先证明如下等式:sin证明:si
余弦定理的证明方法
篇一:余弦定理的证明方法集锦
余弦定理的证明方法集錦
江苏省泗阳县李口中学沈正中
余弦定理和勾股定理一样,证明方法也有很多种,下面给出比较
经典的几种证明方法,供大家参考!
余弦定理:三角形任一边的平方等于另外两边的平方和减去这两
边与其夹角余弦的积的二倍。
如图1所示,在△ABC中,若AB=c,BC=
a,CA=b,则c2=a2+b2-2abcosC(或a2=b2+
c2-2bccosA或b2=c2+a2-2cacosB)。
【证法1】如图2,在锐角△ABC中,作AD⊥BC于D,则CD
=bcosC,AD=bsinC,在△ABD中,由勾股定理,得AB2=BD2+
AD2,即AB2=(a-bcosC)2+(bsinC)2=
a2-2abcosC+b2cos2C+b2sinC2=
a2-2abcosC+b2,即c2=a2+b2-2abcosC。
当C重合于D时,在Rt△ABC中,
∠C=90°,因cosC=0,所以c2=a2+b2。
当C在D左侧时,△ABC为钝角三角
形,如图3所示,∠ACD=180°-C,cos
∠ACD=cos(180°-C)=-cosC,sin∠
ACD=sin(180°-C)=sinC,所以CD=
bcos(180°-C)=-bcosC,AD=b
sin(180
勾股定理的逆定理(简)
一、课题:勾股定理的逆定理 二、课时数:1课时
三、主备人:简远福 四、执教人:简远福
五、班级:八(5)班 六、授课时间:2015年3月23日第二节
七、本组备课成员:向利奎、吴明瑞、简远福
17.2 勾股定理的逆定理(1)
教学目标
1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理. 2.探究勾股定理的逆定理的证明方法.
3.理解原命题、逆命题、逆定理的概念及关系. 重点、难点
1.重点:掌握勾股定理的逆定理及证明. 2.难点:勾股定理的逆定理的证明. 3.难点的突破方法:
先让学生阅读课本第31页古埃及人制作三角形的方法,并要求学生做简单介绍,再动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受.
为学生搭好台阶,扫清障碍.
⑴如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角.
⑵利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.
⑶先做直角,再截
勾股定理
北师大版八年级上册数学 第一章 探究勾股定理专项练习
探索勾股定理(01) 1.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,若CD⊥AB,DE
⊥BC
垂足分
别是D
、E.则图中全等的三角形共有( )
2.如图,在边长为4的等边三角形ABC中,AD是BC
边上的高,点E,F是AD上的两点,则图中阴影部分的面积是( )
4.如图,点A是5×5网格图形中的一个格点(小正方形的顶点),图中每个小
正方形的边长为1,以A为其中的一个顶点,面积等于5/2的格点等腰直角三角形(三角形的三个顶点都是格点)的个数是( )
5.如图,在把易拉罐中
的水
倒入
一
个圆
水杯的过程中,若水杯中的水在点P与易拉罐刚好接触,则此时水杯中的水深为( )
6.如图,将圆桶中的水倒入一个直径为40cm
,高为55cm的圆口容器中,圆桶放置的角度与水平线的夹角为45度.若使容器中的水面与圆桶相接触,则容器中水的深度至少应为
( )
7.如图,△ABC中,有一点P在AC上移动.若AB=AC=5,BC=6,则AP+BP+CP的最小值为( )
8
.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则
AC
勾股定理的别名
简介 勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”(相传大禹治水时,就会运用此定理来解决治水中的计算问题),在外国称为“毕达哥拉斯定理”或者“百牛定理”。(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”)。 他们发现勾股定理的时间都比中国晚(中国是最早发现这一几何宝藏的国家)。目前初二学生开始学习,教材的证明方法大多采用赵爽弦图,证明使用青朱出入图。 勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。 勾股定理的来源 毕达哥拉斯定理是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。 毕达哥拉斯 在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明。埃及称为埃及三角形。 实际上,早在毕达哥拉斯之前,许多民族已经发现了这个事实,而且巴比伦、埃及、中国、印度等的发现都有真凭实据,有案可查。相反,毕达哥拉斯的著作却什么也没有留传下来,关于他的种种传说都是后人辗转传播的。可以说真伪难辨。这个现象的确不太公平,其所以