竖向荷载作用下的分层法
“竖向荷载作用下的分层法”相关的资料有哪些?“竖向荷载作用下的分层法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“竖向荷载作用下的分层法”相关范文大全或资料大全,欢迎大家分享。
竖向荷载计算--分层法例题详解
例:如图1所示一个二层框架,忽略其在竖向荷载作用下的框架侧移,用分层法计算框架的弯矩图,括号内的数字,表示各梁、柱杆件的线刚度值(i?EI)。 l
图1
解:1、图1所示的二层框架,可简化为两个如图2、图3所示的,只带一层横梁的框架进行分析。
图2 二层计算简图
图3 底层计算简图
2、计算修正后的梁、柱线刚度与弯矩传递系数
采用分层法计算时,假定上、下柱的远端为固定,则与实际情况有出入。因此,除底层外,其余各层柱的线刚度应乘以0.9的修正系数。底层柱的弯矩传递系数为矩传递系数,均为
1。 211,其余各层柱的弯矩传递系数为。各层梁的弯23
图4 修正后的梁柱线刚度
图5 各梁柱弯矩传递系数
3、计算各节点处的力矩分配系数
计算各节点处的力矩分配系数时,梁、柱的线刚度值均采用修正后的结果进行计算,如:
G节点处:?GH?iGH?iGH7.63??0.66 8iGH?iGD7.63?3.79iGD3.79??0.332
iGH?iGD7.63?3.79iHG7.63??0.353
iHG?iHE?iHI7.63?3.79?10.21iHI3.79??0.175
iHG?iHE?iHI7.63?3.79?10.21iHE10.21??0.472
竖向荷载计算--分层法例题详解
例:如图1所示一个二层框架,忽略其在竖向荷载作用下的框架侧移,用分层法计算框架的弯矩图,括号内的数字,表示各梁、柱杆件的线刚度值(i?EI)。 l
图1
解:1、图1所示的二层框架,可简化为两个如图2、图3所示的,只带一层横梁的框架进行分析。
图2 二层计算简图
图3 底层计算简图
2、计算修正后的梁、柱线刚度与弯矩传递系数
采用分层法计算时,假定上、下柱的远端为固定,则与实际情况有出入。因此,除底层外,其余各层柱的线刚度应乘以0.9的修正系数。底层柱的弯矩传递系数为矩传递系数,均为
11,其余各层柱的弯矩传递系数为。各层梁的弯231。 2
图4 修正后的梁柱线刚度
图5 各梁柱弯矩传递系数
3、计算各节点处的力矩分配系数
计算各节点处的力矩分配系数时,梁、柱的线刚度值均采用修正后的结果进行计算,如:
G节点处:?GH?iGH?iG?GjiGH7.63??0.668
iGH?iGD7.63?3.79iGD3.79??0.332
iGH?iGD7.63?3.79iHG7.63??0.353
iHG?iHE?iHI7.63?3.79?10.21iHI3.79??0.175
iHG?iHE?iHI7.63?3.79?10.21iHE10.21??0.
竖向荷载计算--分层法例题详解
例:如图1所示一个二层框架,忽略其在竖向荷载作用下的框架侧移,用分层法计算框架的弯矩图,括号内的数字,表示各梁、柱杆件的线刚度值(i?EI)。 l
图1
解:1、图1所示的二层框架,可简化为两个如图2、图3所示的,只带一层横梁的框架进行分析。
图2 二层计算简图
图3 底层计算简图
2、计算修正后的梁、柱线刚度与弯矩传递系数
采用分层法计算时,假定上、下柱的远端为固定,则与实际情况有出入。因此,除底层外,其余各层柱的线刚度应乘以0.9的修正系数。底层柱的弯矩传递系数为矩传递系数,均为
1。 211,其余各层柱的弯矩传递系数为。各层梁的弯23
图4 修正后的梁柱线刚度
图5 各梁柱弯矩传递系数
3、计算各节点处的力矩分配系数
计算各节点处的力矩分配系数时,梁、柱的线刚度值均采用修正后的结果进行计算,如:
G节点处:?GH?iGH?iGH7.63??0.66 8iGH?iGD7.63?3.79iGD3.79??0.332
iGH?iGD7.63?3.79iHG7.63??0.353
iHG?iHE?iHI7.63?3.79?10.21iHI3.79??0.175
iHG?iHE?iHI7.63?3.79?10.21iHE10.21??0.472
竖向荷载作用下钢筋混凝土斜柱—薄壁柱局部转换节点研究
中文摘要
摘要
本文通过两个钢筋混凝土斜柱一一字形薄壁柱局部转换节点在竖向荷载作用下的静力试验以及有限元分析,获得了该节点的基本性能,其中包括开裂前后的竖向荷载的传递路径、试件应力分布,裂缝的发生、发展,及试件最后的破坏形态等。试验重点研究了两类节点中薄壁柱与方柱和转换梁相接处的竖向应力状态、转换梁应力状态以及斜柱和方柱的应力状态。结果表明有孔斜柱转换节点和无孔斜柱转换接点的竖向受力性能和传力机制存在着明显的差异。对有孔斜柱转换节点而言,转换梁的受力最为不利,它不仅承担由薄壁柱传来的垂直荷载,而且还承担由斜柱水平分力引起的轴向拉力,即截面上有弯矩、剪力和轴力的共同作用。正是由于转换梁在复杂应力作用下破坏,导致了薄壁柱中大幅度的应力重分布,使其产生局压破坏,且承载力不能得到充分发挥。但无论如何,整个节点的受力机制具有明显的桁架模型特征。对无孔斜柱转换节点而言,由于斜柱与转换粱和方柱形成了一个整体,而且斜柱角度较大,因而其传力机制和加腋的转换梁类似,但薄壁柱中的应力分布更为均匀,转换效果更好。
根据试验研究和有限元分析的结果,本文对两类转换节点的设计方法进行了初步探讨。在有孔斜柱转换节点中引入了桁架模型以确定转换梁、斜柱及方柱的内力。采用等效应力法确定
竖向荷载作用下钢筋混凝土斜柱—薄壁柱局部转换节点研究
中文摘要
摘要
本文通过两个钢筋混凝土斜柱一一字形薄壁柱局部转换节点在竖向荷载作用下的静力试验以及有限元分析,获得了该节点的基本性能,其中包括开裂前后的竖向荷载的传递路径、试件应力分布,裂缝的发生、发展,及试件最后的破坏形态等。试验重点研究了两类节点中薄壁柱与方柱和转换梁相接处的竖向应力状态、转换梁应力状态以及斜柱和方柱的应力状态。结果表明有孔斜柱转换节点和无孔斜柱转换接点的竖向受力性能和传力机制存在着明显的差异。对有孔斜柱转换节点而言,转换梁的受力最为不利,它不仅承担由薄壁柱传来的垂直荷载,而且还承担由斜柱水平分力引起的轴向拉力,即截面上有弯矩、剪力和轴力的共同作用。正是由于转换梁在复杂应力作用下破坏,导致了薄壁柱中大幅度的应力重分布,使其产生局压破坏,且承载力不能得到充分发挥。但无论如何,整个节点的受力机制具有明显的桁架模型特征。对无孔斜柱转换节点而言,由于斜柱与转换粱和方柱形成了一个整体,而且斜柱角度较大,因而其传力机制和加腋的转换梁类似,但薄壁柱中的应力分布更为均匀,转换效果更好。
根据试验研究和有限元分析的结果,本文对两类转换节点的设计方法进行了初步探讨。在有孔斜柱转换节点中引入了桁架模型以确定转换梁、斜柱及方柱的内力。采用等效应力法确定
第二节 竖向荷载计算
第二节 竖向荷载计算
一、恒荷载标准值计算
前面算板的时候已经算过各楼面荷载,具体数据如下: 楼面、屋面荷载分为两种,恒载和活载。
(1)楼面荷载标准值:
楼面恒载: 3.54KNm2 厕所恒载: 4.94KNm2 屋面恒载标准值: 5.0KNm2
(2)恒载计算: 梁自重计算:
b?h?200mm?600mm(板厚100mm)
梁自重: 0.2??0.6?0.1??25?2.5KNm 抹灰层:20厚混合砂浆 0.02??0.6?0.1??2?17?0.34KNm
合计: 2.84KNm
b?h?250mm?500mm(板厚100mm)
梁自重: 0.25??0.5?0.1??25?2.5KNm
确定嵌岩灌注桩竖向承载力的荷载传递法
以荷载传递解析法研究嵌岩灌注桩桩周及桩底荷载传递性状,并针对实际工程中桩周土体的加工软化和加工硬化型土的不同情况,建立了各种土体与岩层的荷载传递统一模型。对于桩端荷载传递机理,考虑嵌岩灌注桩桩端沉渣的影响,采用桩端阻三折线模型。在此基础上,充分考虑桩侧土(
第23卷 第8期
岩石力学与工程学报 23(8):1394~1397
2004年4月 Chinese Journal of Rock Mechanics and Engineering April,2004
大坝CT技术研究概况与进展
余志雄 薛桂玉 周洪波 苏玉杰
(武汉大学水利水电学院 武汉 430072)
摘要 介绍了CT技术的原理和分类,讨论了弹性波CT技术、电磁波CT技术和电阻率CT技术在大坝隐患检测中的应用和进展,并列举实例,证明其应用效果,说明CT技术在大坝隐患检测中有着广阔的应用前景。 关键词 地下工程,大坝,隐患检测,CT,弹性波成像,电磁波成像,电阻率成像
分类号 TU 459+.3 文献标识码 A 文章编号 1000-6915(200
均布荷载作用下简支梁结构分析
均布荷载作用下简支梁结构分析
摘要:本文利用ANSYS软件中的BEAM系列单元建立简支梁有限元模型,对其进行静力分析与模态分析,得出梁的结构变形,分析梁的受力情况。并用有限元刚度矩阵知识求解简支梁端点处得位移和旋度。在此基础上,利用经典力学对以上所得的结果进行梁的有关计算,并将结果与有限元刚度矩阵和ANSYS软件所得结果进行比较。通过比较得出不同方法在简支梁求解过程中自己的优势和缺点。
关键词:ANSYS简支梁 均布荷载 求解 应力 位移
1.引言
钢制实心梁的截面尺寸为10mm×10mm(如图1所示),弹性模量为200GPa,均布荷载的大小及方向如图1所示。
图1
2.利用力学方法求解
运用力学方法将上述结构求解,易得A、B支座反力相等为500N,该简支梁的计算简图、弯矩图以及剪力图如下图所示:
1000N/m
1000mm
图2简支梁计算简图
跨中弯矩:125N㎡
图3简支梁弯矩图
支座反力500N
图4简支梁剪力图
3.利用ANSYS软件建立模型与求解
通过关键点创建实体模型,然后定义材料及单元属性,然后划分网格,建立有限元模型。具体步骤包括:添加标题、定义关键点、定义直
爆炸荷载作用下钢筋混凝土柱的动力响应与破坏模式
第29卷第4期2008年8月
文章编号:100026869(2008)0420112206
建 筑 结 构 学 报
JournalofBuildingStructures
Vol129,No14Aug12008
爆炸荷载作用下钢筋混凝土柱的
动力响应与破坏模式
师燕超,李忠献
(天津大学建筑工程学院,天津300072)
摘要:在爆炸荷载作用下,钢筋混凝土构件和结构的动力响应较之地震荷载和静态荷载作用下要复杂得多。运用有限元显式动力分析软件LS2DYNA,建立了典型钢筋混凝土柱的三维有限元模型,该模型对钢筋混凝土采用分离式建模,并且考虑了材料的应变率效应和钢筋与混凝土间的粘结滑移。在该有限元模型的基础上,通过对爆炸荷载作用下钢筋混凝土柱动态响应的数值模拟,研究了钢筋混凝土柱在爆炸荷载作用下可能的破坏模式及其规律。同时,运用参数化分析方法,研究了截面惯性矩、混凝土轴心抗压强度、纵筋配筋率和配箍率等参数对钢筋混凝土柱在爆炸荷载作用下的动态响应的影响,在数值模拟结果的基础上,分析提出了钢筋混凝土柱抗爆设计时应当注意的问题。研究结果表明:在爆炸荷载作用下,钢筋混凝土柱的破坏模式不仅和自身的特性有关,还取决于爆炸荷载的类型。,能够显著降低钢筋混凝土柱在爆炸荷载作用下的柱中
爆炸荷载作用下建筑结构连续倒塌分析研究进展
爆炸荷载作用下建筑结构连续 倒塌分析研究进展
XXX
摘要: 随着恐怖爆炸以及偶然性爆炸的不断增多, 建筑物的抗爆、防爆问题越来越受关注。近些年来, 国内外学者对爆炸荷载作用下建筑结构的破坏与连续倒塌进行了广泛的研究, 内容包括各类结构构件在爆炸荷载作用下的动态响应特征与损伤破坏机理、结构构件承受爆炸荷载后的损伤程度评估以及结构连续倒塌分析等。综述近些年来国内外爆炸荷载作用下建筑结构的连续倒塌分析研究的最新进展。
关键词:爆炸荷载; 建筑结构; 连续倒塌; 破坏分析; 研究进展
State-of-the-art in Progressive collapse analysis of building structures under blast loads
XXX
Abstract: With the growing number of terrorist bombings and accidental explosions, we take more and more attention to the blast resistant of building structures. Recently, scholars bot