圆锥曲线常见结论推导
“圆锥曲线常见结论推导”相关的资料有哪些?“圆锥曲线常见结论推导”相关的范文有哪些?怎么写?下面是小编为您精心整理的“圆锥曲线常见结论推导”相关范文大全或资料大全,欢迎大家分享。
圆锥曲线部分常见结论
沈阳市第三十一中学 李曙光编辑整理,希望对大家有帮助,疏漏之处请指正 椭圆常见结论
焦点的位置 焦点在x轴上 焦点在y轴上 图形 标准方程 x2y2?2?1?a?b?0? 2ab?a?x?a且?b?y?b y2x2?2?1?a?b?0? 2ab?b?x?b且?a?y?a 范围 ?1??a,0?、?2?a,0? 顶点 ?1?0,?a?、?2?0,a? ?1??b,0?、?2?b,0? ?1?0,?b?、?2?0,b? 轴长 焦点 焦距 对称性 短轴的长?2b 长轴的长?2a F1??c,0?、F2?c,0? F1?0,?c?、F2?0,c? F1F2?2c?c2?a2?b2? 关于x轴、y轴、原点对称 离心率 cb2e??1?2?0?e?1?e越小,椭圆越圆;e越大,椭圆越扁aa 1.椭圆的两焦点分别为F1,F2,P是椭圆上任意一点,则有以下结论成立: (1)PF1?PF2?2a; (2)a?c?PF1?a?c; (3)b?PF1?PF2?a;
22x2y22. 椭圆的方程为2?2?1(a>b>0), 左、右焦点分别为F1,F2,P?x0,y0?是椭圆上
ab任
意
一
点
,
则
有
:
(1)
b22a2222y0?2?a?x0?,x0?2?b?
圆锥曲线重要结论
圆锥曲线中的重要性质经典精讲上
性质一:椭圆中焦点三角形的内切圆圆心轨迹是以原焦点为顶点的椭圆
双曲线中焦点三角形的内切圆圆心轨迹是以过原顶点的两平行开线段(长为2b)
x2y2??1上,F1,F2为椭圆之左右焦点,点G为△F1PF2内心,试1.已知动点P在椭圆43求点G的轨迹方程.
x2y2??1上,F1,F2为双曲线之左右焦点,圆G是△F1PF2的内2.已知动点P在双曲线
43切圆,探究圆G是否过定点,并证明之.
性质二:圆锥曲线的焦点弦的两个焦半径倒数之和为定值。
椭圆的焦点弦的两个焦半径倒数之和为常数
112?? |AF1||BF1|ep双曲线的焦点弦的两个焦半径倒数之和为常数 AB在同支时
112112?? AB在异支时|?|? |AF1||BF1|ep|AF1||BF1|ep112?? |AF||BF|ep抛物线的焦点弦的两个焦半径倒数之和为常数
x2y2??1,F为椭圆之左焦点,过点F的直线交椭圆于A,B两点,是否存在 3.已知椭圆43实常数?,使AB??FA?FB恒成立.并由此求∣AB∣的最小值.
1
性质三:圆锥曲线相互垂直的焦点弦长倒数之和为常数
112?e2椭圆互相垂直的焦点弦倒数之和为常数 ??|AB||
圆锥曲线常用结论
圆锥曲线常用结论
一.椭 圆
1.以焦点弦PQ为直径的圆必与对应准线相离.
2.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.
x0xy0yx2y2?2?1. ??13.若P在椭圆上,则过的椭圆的切线方程是(x,y)P0000a2ba2b2x2y24.若P0(x0,y0)在椭圆2?2?1外 ,则过P0作椭圆的两条切线切点为P1、P2,则切点弦
abxxyyP1P2的方程是02?02?1.
abx2y25.椭圆2?2?1(a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点
ab??F1PF2??,则椭圆的焦点角形的面积为S?F1PF2?b2tan.
2x2y26.椭圆2?2?1(a>b>0)的焦半径公式:|MF1|?a?ex0,|MF2|?a?ex0.
ab7.设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交焦点F对应的准线于M、N两点,则MF⊥NF.
8.过椭圆一个焦点F的直线与椭圆交于两点P、Q, A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.
22bxy9.AB是椭圆2?2?1的不平行于对称轴的弦,M(x0,y0)为AB的中点,则kO
高中数学圆锥曲线小结论
椭 圆
1. 点P处的切线PT平分△PF1F2在点P处的外角.
2. PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.
3. 以焦点弦PQ为直径的圆必与对应准线相离.
4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切. 5. 6. 7.
xxyyx2y2若P0(x0,y0)在椭圆2?2?1上,则过P0的椭圆的切线方程是02?02?1.
ababxxyyx2y2若P0(x0,y0)在椭圆2?2?1外 ,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是02?02?1.
ababx2y2椭圆2?2?1 (a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点?F1PF2??,则椭圆的焦点角形的面
ab?积为S?F1PF2?b2tan.
2x2y2椭圆2?2?1(a>b>0)的焦半径公式:
ab|MF1|?a?ex0,|MF2|?a?ex0(F1(?c,0) , F2(c,0)M(x0,y0)).
8.
9. 设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F
的椭圆准线于M、N两点,则MF⊥NF.
高中数学圆锥曲线小结论
椭 圆
1. 点P处的切线PT平分△PF1F2在点P处的外角.
2. PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.
3. 以焦点弦PQ为直径的圆必与对应准线相离.
4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切. 5. 6. 7.
xxyyx2y2若P0(x0,y0)在椭圆2?2?1上,则过P0的椭圆的切线方程是02?02?1.
ababxxyyx2y2若P0(x0,y0)在椭圆2?2?1外 ,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是02?02?1.
ababx2y2椭圆2?2?1 (a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点?F1PF2??,则椭圆的焦点角形的面
ab?积为S?F1PF2?b2tan.
2x2y2椭圆2?2?1(a>b>0)的焦半径公式:
ab|MF1|?a?ex0,|MF2|?a?ex0(F1(?c,0) , F2(c,0)M(x0,y0)).
8.
9. 设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F
的椭圆准线于M、N两点,则MF⊥NF.
直线和圆锥曲线常见题型(好)
直线和圆锥曲线经常考查的一些题型
直线与椭圆、双曲线、抛物线中每一个曲线的位置关系都有相交、相切、相离三种情况,从几何角度可分为三类:无公共点,仅有一个公共点及有两个相异公共点对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.
直线和椭圆、双曲线、抛物线中每一个曲线的公共点问题,可以转化为它们的方程所组成的方程组求解的问题,从而用代数方法判断直线与曲线的位置关系。
解决直线和圆锥曲线的位置关系的解题步骤是: (1)直线的斜率不存在,直线的斜率存, (2)联立直线和曲线的方程组; (3)讨论类一元二次方程 (4)一元二次方程的判别式 (5)韦达定理,同类坐标变换 (6)同点纵横坐标变换
(7)x,y ,k(斜率)的取值范围
(8)目标:弦长,中点,垂直,角度,向量,面积,范围等等
运用的知识:
1、中点坐标公式:12
12
,y 2
2
x x y y x ++==
,其中,x y 是点1122(,)(,)A x y B x y ,的中
点坐标。
2、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上,
则1122y kx b y kx b
圆锥曲线部分二级结论的应用-(学生版)
圆锥曲线部分二级结论的应用
一、单选题
1.已知抛物线C:y2?4x,点D?2,0?,E?4,0?,M是抛物线C异于原点O的动点,连接ME并延长交抛物线C于点N,连接MD,ND并分别延长交拋物线C于点P,Q,连接PQ,若直线MN,PQ的斜率存在且分别为k1,k2,则A. 4 B. 3 C. 2 D. 1
k2?( ) k1x2y22.如图,设椭圆E:2?2?1(a?b?0)的右顶点为A,右焦点为F, B为椭
ab圆E在第二象限上的点,直线BO交椭圆E于点C,若直线BF平分线段AC于M,
则椭圆E的离心率是( )
A.
1121 B. C. D. 2334x2y23.已知F1、F2是双曲线2?2?1(a?0,b?0)的左右焦点,以F1F2为直径的圆与
ab双曲线的一条渐近线交于点M,与双曲线交于点N,且M、N均在第一象限,当直
2线MF1//ON时,双曲线的离心率为e,若函数f?x??x?2x?2,,则f?e??() xA. 1 B.
3 C. 2 D. 5 4.已知椭圆和双曲线有共同焦点F1,F2, P是它们的一个交点,且?F1PF2?椭圆和双曲线的离心率分别为e1,e2,则
?3,记
圆锥曲线利用点的坐标解决圆锥曲线问题
第九章 利用点的坐标处理解析几何问题 解析几何
利用点的坐标处理解析几何问题
有些解析几何的题目,问题的求解不依赖于传统的“设点,联立,消元,韦达定理整体代入”步骤,而是能够计算出交点的坐标,且点的坐标并不复杂,然后以点的坐标作为核心去处理问题。 一、基础知识:
1、韦达定理的实质:在处理解析几何的问题时,韦达定理的运用最频繁的,甚至有的学生将其视为“必备结构”,无论此题是否有思路,都先联立方程,韦达定理。然而使用“韦达定理”的实质是什么?实质是“整体代入”的一种方式,只是因为在解析几何中,一些问题的求解经常与x1?x2,x1x2,y1?y2,y1y2相关,利用“韦达定理”可进行整体代入,可避免因为这几个根的形式过于复杂导致运算繁琐。所以要理解“韦达定理”并不是解析几何的必备工具,只是在需要进行整体代入时,才运用的一种手段。 2、利用点坐标解决问题的优劣:
(1)优点:如果能得到点的坐标,那么便可应对更多的问题,且计算更为灵活,不受
x1?x2,x1x2,y1?y2,y1y2形式的约束
(2)缺点:有些方程的根过于复杂(例如用求根公式解出的根),从而使得点
文科圆锥曲线
高考数学练习题---文科圆锥曲线
一、选择题
x2y21.【2012高考新课标文4】设F1F2是椭圆E:2?2?1(a?b?0)的左、右焦点,P为直
ab线x?
3a上一点,?F2PF1是底角为30的等腰三角形,则E的离心率为( ) 212??(A) (B) (C) (D)
23??【答案】C
【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题.
0【解析】∵△F2PF1是底角为30的等腰三角形, ∴?PF2A?600,|PF2|?|F1F2|?2c,∴|AF2|=c,∴2c?33a,∴e=,故选C. 242.【2012高考新课标文10】等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线
y2?16x的准线交于A,B两点,AB?43;则C的实轴长为( )
(A)2 (B) 22 (C)? (D)?
【答案】C
【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题. 【解析】由题设知抛物线的准线为:x?4,设等轴双曲线方程为:x?y?a,将x?4代入等轴双曲线方程解得y=?16?a2,∵
圆锥曲线利用点的坐标解决圆锥曲线问题
第九章 利用点的坐标处理解析几何问题 解析几何
利用点的坐标处理解析几何问题
有些解析几何的题目,问题的求解不依赖于传统的“设点,联立,消元,韦达定理整体代入”步骤,而是能够计算出交点的坐标,且点的坐标并不复杂,然后以点的坐标作为核心去处理问题。 一、基础知识:
1、韦达定理的实质:在处理解析几何的问题时,韦达定理的运用最频繁的,甚至有的学生将其视为“必备结构”,无论此题是否有思路,都先联立方程,韦达定理。然而使用“韦达定理”的实质是什么?实质是“整体代入”的一种方式,只是因为在解析几何中,一些问题的求解经常与x1?x2,x1x2,y1?y2,y1y2相关,利用“韦达定理”可进行整体代入,可避免因为这几个根的形式过于复杂导致运算繁琐。所以要理解“韦达定理”并不是解析几何的必备工具,只是在需要进行整体代入时,才运用的一种手段。 2、利用点坐标解决问题的优劣:
(1)优点:如果能得到点的坐标,那么便可应对更多的问题,且计算更为灵活,不受
x1?x2,x1x2,y1?y2,y1y2形式的约束
(2)缺点:有些方程的根过于复杂(例如用求根公式解出的根),从而使得点