圆锥曲线点差法例题
“圆锥曲线点差法例题”相关的资料有哪些?“圆锥曲线点差法例题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“圆锥曲线点差法例题”相关范文大全或资料大全,欢迎大家分享。
圆锥曲线典型例题
每天一有时间就写,吃饭的时候就边吃边看高考题,这种疯狂为一件事而努力的感觉真的很好!
今天先发辅导书开头部分的一小节,只是其中的一点点内容,不过其他部分也都是这种形式,其他的就不发了,主要是让大家看下这种形式好不好。
这本辅导书不是一个练习册,而是高中数学解题指导,我个人认为可以将其作为一个“字典”,里面涵盖了绝大部分常见题目的解决办法。
普通的辅导书对于题目只是枯燥套话性质的分析,但这本书的分析(也就是【黑夜语】以及答案解析中穿插的评论)却是我一个字一个字的心血,比如说答案是这么做的,那为什么想到这么做?别的辅导书没有讲,而我重点讲为什么这么做!
由于题量太大的话意义也不大,所以决定只选用10、11年高考题目,对于核心考点(比如圆锥曲线、数列等解答题),会选90%以上的题目,也就是说近两年基本所有该类高考题都会选中(除非某道题意义实在不大才不选),对于不是特别核心的知识,就会选40%-60%左右的题目。里面会著名是哪年哪地的考题,并且题号不变,这样大家可以根据其题号来大致明白此题的难度。(毕竟最后两道题往往是压轴题,前面的题难度会小一点。)
我有自信,如果能将这本书反复看个七八遍,对于里面的每一种情况都熟练到信手拈来的地步,对于里面的【黑夜
圆锥曲线典型例题讲解
9.1 椭 圆
典例精析
题型一 求椭圆的标准方程
45
【例1】已知点P在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和
325
,过P作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程. 3
x23y23x2y2
【解析】故所求方程为+=1或+=1.
510105
【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx2+ny2=1(m>0,n>0且m≠n);(2)在求椭圆中的a、b、c时,经常用到椭圆的定义及解三角形的知识.
【变式训练1】已知椭圆C1的中心在原点、焦点在x轴上,抛物线C2的顶点在原点、焦点在x轴上.小明从曲线C1,C2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x,y).由于记录失误,使得其中恰有一个点既不在椭圆C1上,也不在抛物线C2上.小明的记录如下:
x2y2
据此,可推断椭圆C1的方程为 . +=1.
126题型二 椭圆的几何性质的运用
【例2】已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°. (1)求椭圆离心率的范围;
(2)求证:△F1PF2的面积只与椭圆的短轴长有关. 1
【解析】(1)e的取
圆锥曲线利用点的坐标解决圆锥曲线问题
第九章 利用点的坐标处理解析几何问题 解析几何
利用点的坐标处理解析几何问题
有些解析几何的题目,问题的求解不依赖于传统的“设点,联立,消元,韦达定理整体代入”步骤,而是能够计算出交点的坐标,且点的坐标并不复杂,然后以点的坐标作为核心去处理问题。 一、基础知识:
1、韦达定理的实质:在处理解析几何的问题时,韦达定理的运用最频繁的,甚至有的学生将其视为“必备结构”,无论此题是否有思路,都先联立方程,韦达定理。然而使用“韦达定理”的实质是什么?实质是“整体代入”的一种方式,只是因为在解析几何中,一些问题的求解经常与x1?x2,x1x2,y1?y2,y1y2相关,利用“韦达定理”可进行整体代入,可避免因为这几个根的形式过于复杂导致运算繁琐。所以要理解“韦达定理”并不是解析几何的必备工具,只是在需要进行整体代入时,才运用的一种手段。 2、利用点坐标解决问题的优劣:
(1)优点:如果能得到点的坐标,那么便可应对更多的问题,且计算更为灵活,不受
x1?x2,x1x2,y1?y2,y1y2形式的约束
(2)缺点:有些方程的根过于复杂(例如用求根公式解出的根),从而使得点
圆锥曲线利用点的坐标解决圆锥曲线问题
第九章 利用点的坐标处理解析几何问题 解析几何
利用点的坐标处理解析几何问题
有些解析几何的题目,问题的求解不依赖于传统的“设点,联立,消元,韦达定理整体代入”步骤,而是能够计算出交点的坐标,且点的坐标并不复杂,然后以点的坐标作为核心去处理问题。 一、基础知识:
1、韦达定理的实质:在处理解析几何的问题时,韦达定理的运用最频繁的,甚至有的学生将其视为“必备结构”,无论此题是否有思路,都先联立方程,韦达定理。然而使用“韦达定理”的实质是什么?实质是“整体代入”的一种方式,只是因为在解析几何中,一些问题的求解经常与x1?x2,x1x2,y1?y2,y1y2相关,利用“韦达定理”可进行整体代入,可避免因为这几个根的形式过于复杂导致运算繁琐。所以要理解“韦达定理”并不是解析几何的必备工具,只是在需要进行整体代入时,才运用的一种手段。 2、利用点坐标解决问题的优劣:
(1)优点:如果能得到点的坐标,那么便可应对更多的问题,且计算更为灵活,不受
x1?x2,x1x2,y1?y2,y1y2形式的约束
(2)缺点:有些方程的根过于复杂(例如用求根公式解出的根),从而使得点
圆锥曲线轨迹方程经典例题
轨迹方程经典例题
一、轨迹为圆的例题:
1、 必修2课本P124B组2:长为2a的线段的两个端点在x轴和y轴上移动,求线段AB的中点M的轨迹方程:
必修2课本P124B组:已知M与两个定点(0,0),A(3,0)的距离之比为
1,求点M的轨迹方程;(一般地:必修2课2本P144B组2:已知点M(x,y)与两个定点M1,M2的距离之比为一个常数m;讨论点M(x,y)的轨迹方程(分m=1,与m?1进行讨论)
2、 必修2课本P122例5:线段AB的端点B的坐标是(4,3),端点A在圆
BMA(x?1)2?y2?1上运动,求AB的中点M的轨迹。
(2013新课标2卷文20)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为22,在y轴上截得线段长为23。 (1)求圆心的P的轨迹方程;
(2)若P点到直线y?x的距离为
2,求圆P的方程。 2
如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.
解:设AB的中点为R,坐标为(x,y),则在Rt△ABP中,|AR|=|PR|.又因为R是弦AB的中点,依垂径定理:在Rt△OAR中,|AR|2=|AO|2-|OR
圆锥曲线轨迹方程经典例题
轨迹方程经典例题
一、轨迹为圆的例题:
1、 必修2课本P124B组2:长为2a的线段的两个端点在x轴和y轴上移动,求线段AB的中点M的轨迹方程:
必修2课本P124B组:已知M与两个定点(0,0),A(3,0)的距离之比为
1,求点M的轨迹方程;(一般地:必修2课2本P144B组2:已知点M(x,y)与两个定点M1,M2的距离之比为一个常数m;讨论点M(x,y)的轨迹方程(分m=1,与m?1进行讨论)
2、 必修2课本P122例5:线段AB的端点B的坐标是(4,3),端点A在圆
BMA(x?1)2?y2?1上运动,求AB的中点M的轨迹。
(2013新课标2卷文20)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为22,在y轴上截得线段长为23。 (1)求圆心的P的轨迹方程;
(2)若P点到直线y?x的距离为
2,求圆P的方程。 2
如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.
解:设AB的中点为R,坐标为(x,y),则在Rt△ABP中,|AR|=|PR|.又因为R是弦AB的中点,依垂径定理:在Rt△OAR中,|AR|2=|AO|2-|OR
圆锥曲线考点例题与解析
学习必备 欢迎下载
圆锥曲线考点——例题
考点一 求圆锥曲线方程
求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结
合、等价转化、分类讨论、逻辑推理、合理
运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法. ●典例探究 [例1]某电厂冷却塔的外形是如图所示的双曲线的一部分,绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A 、A ′是双曲线的顶点,C 、C ′是冷却塔上口直径的两个端点,B 、B ′是下底直径的两个端点,已知AA ′=14 m ,CC ′=18 m,BB ′=22 m,塔高
20 m. 建立坐标系并写出该双曲线方程. [例2]过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为2
2
的椭圆C
相交于A 、B 两点,直线y =2
1
x 过线段AB
的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程
. [例3]如图,已知△P 1OP 2的面积为
4
27
,P 为线段P 1P 2的一个三等分点,求以直线OP 1、OP 2为渐近线且过
数学曲线方程及圆锥曲线典型例题解析
高考资源网(www.ks5u.com),您身边的高考专家
2008年高考数学曲线方程及圆锥曲线典型例题解析
一.知识要点
1.曲线方程
(1)求曲线(图形)方程的方法及其具体步骤如下: 步 骤 1、“建”:建立坐标系;“设”:设动点坐标。 含 义 建立适当的直角坐标系,用(x,y)表示曲线上任意一点M的坐标。 说 明 (1) 所研究的问题已给出坐标系,即可直接设点。 (2) 没有给出坐标系,首先要选取适当的坐标系。 2、现(限):由限制条写出适合条件P的点M这是求曲线方程的重要一步,应仔细分析件,列出几何等式。 的集合P={M|P(M)} 题意,使写出的条件简明正确。 3、“代”:代换 4、“化”:化简 5、证明 用坐标法表示条件常常用到一些公式。 P(M),列出方程f(x,y)=0 化方程f(x,y)=0为最简形式。 证明化简以后的方程的解为坐标的点都是曲线上的点。 要注意同解变形。 化简的过程若是方程的同解变形,可以不要证明,变形过程中产生不增根或失根,应在所得方程中删去或补上(即要注意方程变量的取值范围)。 这五个步骤(不包括证明)可浓缩为五字“口诀”:建设现(限)代化” (2)求曲线方程的常见方法: 直接法:
12.5圆锥曲线中的点差法习题【附答案】
圆锥曲线中的点差法习题
若设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1)、B(x2,y2),将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。
一、 以定点为中点的弦所在直线的方程
x2y2??1内一点M(2,1)引一条弦,例1、 过椭圆使弦被M点平分,求这条弦所在直线164的方程。
y2?1,经过点M(1,1)能否作一条直线l,使l与双曲线交于A、例2、 已知双曲线x?2B,且点M是线段AB的中点。若存在这样的直线l,求出它的方程,若不存在,
2说明理由。
二、
过定点的弦和平行弦的中点坐标和中点轨迹
1y2x2??1的一条弦的斜率为3,它与直线x?的交点恰为这条弦的中例3、 已知椭圆
27525点M,求点M的坐标。
y2x2??1,求它的斜率为3的弦中点的轨迹方程。 例4、 已知椭圆
7525
三、
求与中点弦有关的圆锥曲线的方程
例5、 已知中心在原点,一焦点为F(0,50)的椭圆被直线l:y?3x?2截得的弦的中点
的横坐标为
1,求椭圆的方程。 2
四、圆锥曲线上两点关于某直线对称问题
x2y2??1,试确定的m取值
圆锥曲线方程知识点总结
§8.圆锥曲线方程 知识要点
一、椭圆方程.
PF1?PF?PF?PF222?2a?F1F2方程为椭圆,?2a?F1F2无轨迹,?2a?F1F2以F1,F2为端点的线段221. 椭圆方程的第一定义:PF1PF1
⑴①椭圆的标准方程:i. 中心在原点,焦点在x轴上:xa?22yb?22?1(a?b?0)22.
.
ii. 中心在原点,焦点在y轴上:yaxb?1(a?b?0)②一般方程:Ax2?By2?1(A?0,B?0).
xa22③椭圆的标准方程:
?yb22?1的参数方程为??x?acos??y?bsin?(一象限?应是属于0????2).
⑵①顶点:(?a,0)(0,?b)或(0,?a)(?b,0).
②轴:对称轴:x轴,y轴;长轴长2a,短轴长2b. ③焦点:(?c,0)(c,0)或(0,?c)(0,c). ④焦距:F1F2?2c,c?a2?b2. ⑤准线:x??a2c或y??a2c.
⑥离心率:e?⑦焦点半径:
ca(0?e?1).
i. 设P(x0,y0)为椭圆ii.设P(x0,y0)为椭圆
xaxb2222?yb2222?1(a?b?0)上的一点,F1,F?1(a?b?0)上的一点,F1,Fa22为左、右焦点,