ar模型和arima模型
“ar模型和arima模型”相关的资料有哪些?“ar模型和arima模型”相关的范文有哪些?怎么写?下面是小编为您精心整理的“ar模型和arima模型”相关范文大全或资料大全,欢迎大家分享。
AR,MA,ARIMA模型介绍及案例分析
BOX-JENKINS预测法
1 适用于平稳时序的三种基本模型
(1)AR(p)模型(Auto regression Model)——自回归模型
p阶自回归模型:
????=??+?1?????1+?2?????2+?+??????????+????
式中,????为时间序列第??时刻的观察值,即为因变量或称被解释变量;?????1,?????2,?,???????为时序????的滞后序列,这里作为自变量或称为解释变量;????是随机误差项;??,?1,?2,?,???为待估的自回归参数。 (2)MA(q)模型(Moving Average Model)——移动平均模型
q阶移动平均模型:
yt???et??1et?1??2et?2????qet?q
式中,?为时间序列的平均数,但当{yt}序列在0上下变动时,显然?=0,可删除此项;et,et?1,et?2,?,et?q为模型在第t期,第t?1期,?,第t?q期的误差;?1,?2,?,?q为待估的移动平均参数。
(3)ARMA(p,q)模型——自回归移动平均模型(Auto regression Moving Average Model)
模型的形式为:
yt?c??1yt?1??2yt?2?
季节ARIMA模型
2.8 季节时间序列模型
在某些时间序列中,存在明显的周期性变化。这种周期是由于季节性变化(包括季度、月度、周度等变化)或其他一些固有因素引起的。这类序列称为季节性序列。比如一个地区的气温值序列(每隔一小时取一个观测值)中除了含有以天为周期的变化,还含有以年为周期的变化。在经济领域中,季节性序列更是随处可见。如季度时间序列、月度时间序列、周度时间序列等。处理季节性时间序列只用以上介绍的方法是不够的。描述这类序列的模型之一是季节时间序列模型(seasonal ARIMA model),用SARIMA表示。较早文献也称其为乘积季节模型(multiplicative seasonal model)。
设季节性序列(月度、季度、周度等序列都包括其中)的变化周期为s,即时间间隔为s的观测值有相似之处。首先用季节差分的方法消除周期性变化。季节差分算子定义为, ?s = 1- Ls 若季节性时间序列用yt表示,则一次季节差分表示为 ?s yt = (1- Ls) yt = yt - yt - s
对于非平稳季节性时间序列,有时需要
季节ARIMA模型
2.8 季节时间序列模型
在某些时间序列中,存在明显的周期性变化。这种周期是由于季节性变化(包括季度、月度、周度等变化)或其他一些固有因素引起的。这类序列称为季节性序列。比如一个地区的气温值序列(每隔一小时取一个观测值)中除了含有以天为周期的变化,还含有以年为周期的变化。在经济领域中,季节性序列更是随处可见。如季度时间序列、月度时间序列、周度时间序列等。处理季节性时间序列只用以上介绍的方法是不够的。描述这类序列的模型之一是季节时间序列模型(seasonal ARIMA model),用SARIMA表示。较早文献也称其为乘积季节模型(multiplicative seasonal model)。
设季节性序列(月度、季度、周度等序列都包括其中)的变化周期为s,即时间间隔为s的观测值有相似之处。首先用季节差分的方法消除周期性变化。季节差分算子定义为, ?s = 1- Ls 若季节性时间序列用yt表示,则一次季节差分表示为 ?s yt = (1- Ls) yt = yt - yt - s
对于非平稳季节性时间序列,有时需要
实验指导书ARIMA模型建模和预测
. WORD格式.资料 .
实验指导书(ARIMA模型建模与预测)
例:我国1952-2011年的进出口总额数据建模及预测
1、模型识别和定阶
(1)数据录入
打开Eviews软件,选择“File”菜单中的“New--Workfile”选项,在“Workfile structure type”栏选择“Dated –regular frequency”,在“Date specification”栏中分别选择“Annual”(年数据) ,分别在起始年输入1952,终止年输入2011,文件名输入“im_ex”,点击ok,见下图,这样就建立了一个工作文件。
在workfile中新建序列im_ex,并录入数据(点击File/Import/Read Text-Lotus-Excel…,
找到相应的Excel数据集,打开数据集,出现如下图的窗口,在“Data order”选项中选择“By observation-series in columns”即按照观察值顺序录入,第一个数据是从B15开始的,所以在“Upper-left data cell”中输入B15,本例只有一
实验2 SAS模拟AR模型
实验二 模拟AR模型
一、 实验目的:熟悉各种AR模型的样本自相关系数和偏相关系数的特点,为理 论学习提供直观的印象。 二、 实验内容:随机模拟各种AR模型。
三、 实验要求:记录各AR模型的样本自相关系数和偏相关系数,观察各种序列图形,总结AR模型的样本自相关系数和偏相关系数的特点 四、 实验时间:2小时。 五、 实验软件:SAS系统。 六、 实验步骤
1、开机进入SAS系统。 2、 模拟实根情况,模拟过程。 3、 在edit窗中输入如下程序: data a; x1=0.5; x2=0.5; n=-50;
do i=-50 to 250; a=rannor(32565); x=a-0.6*x1+0.4*x2; x2=x1; x1=x; n=n+1;
if i>0 then output; end; run;
4、观察输出的数据,输入如下程序,并提交程序。 proc print data=a;
试验季节ARIMA模型建模试验指导
实验五、季节ARIMA模型建模与预测实验指导
一、实验目的
学会识别时间序列的季节变动,能看出其季节波动趋势。学会剔除季节因素的方法,了解ARIMA模型的特点和建模过程,掌握利用最小二乘法等方法对ARIMA模型进行估计,利用信息准则对估计的ARIMA模型进行诊断,以及如何利用ARIMA模型进行预测。掌握在实证研究如何运用Eviews软件进行ARIMA模型的识别、诊断、估计和预测。
二、基本概念
季节变动:客观社会经济现象受季节影响,在一年内有规律的季节更替现象,其周期为一年四个季度或12个月份。
季节ARIMA模型是指将受季节影响的非平稳时间序列通过消除季节影响转化为平稳时间序列,然后将平稳时间序列建立ARMA模型。ARIMA模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA)、自回归过程(AR)、自回归移动平均过程(ARMA)以及ARIMA过程。
三、实验内容及要求
1、实验内容:
(1)根据时序图的形状,采用相应的方法把周期性的非平稳序列平稳化;
(2)对经过平稳化后的桂林市1999年到2006的季度旅游总收入序列运用经典B-J方法论建立合适的ARIMA(p,d,q)模型,并能够利用此模型进行
第九章 ARIMA模型
第九章 ARIMA模型
已知1867-1938年英国(英格兰及威尔士)绵羊的数量如表1所示,运用时间序列模型预测未来三年英国的绵羊数量。
表1 1867-1938年英国绵羊数量 年份 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 绵羊数 2203 2360 2254 2165 2024 2078 2214 2292 2207 2119 2119 2137 2132 1955 1785 1747 1818 1909 1958 1892 1919 1853 1868 1991 年份 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 绵羊数 2111 2119 1991 1859 1856 1924 1892 1916 1968 19
Matlab_AR模型阶数确定
自回归(AR)模型
理论模型
自回归(AutoRegressive, AR)模型又称为时间序列模型,数学表达式为
AR:y(t) a1y(t 1) ... anay(t na) e(t)
其中,e(t)为均值为0,方差为某值的白噪声信号。
Matlab Toolbox
研究表明,采用Yule-Walker方法可得到优化的AR模型[1],故采用aryule程序估计模型参数。
[m,refl] = ar(y,n,approach,window)
模型阶数的确定
有几种方法来确定。如Shin提出基于SVD的方法,而AIC和FPE方法是目前应用最广泛的方法。若计算出的AIC较小,例如小于-20,则该误差可能对应于损失函数的10-10级别,则这时阶次可以看成是系统合适的阶次。
am = aic(model1,model2,...)
fp = fpe(Model1,Model2,Model3,...)
AR预测
yp = predict(m,y,k)
m表示预测模型;y为实际输出;k预测区间;yp为预测输出。 y(1),y(2),...,y(t k 1),y(t k),...,y(t 2),y(t 1),y(t)
当k
自回归AR模型、移动平均MA模型与自回归移动平均ARMA模型的比较分析
自回归AR模型、移动平均MA模型与自回归移动平均ARMA模型的比较分析
系统中某一因素变量的时间序列数据没有确定的变化形式,也不能用时间的确定函数描述,但可以用概率统计方法寻求比较合适的随机模型近似反映其变化规律。(自变量不直接含有时间变量,但隐含时间因素)
1. 自回归AR(p)模型
(R:模型的名称 P:模型的参数)(自己影响自己,但可能存在误差,误差即没有考虑到的因素)
(1)模型形式(εt越小越好,但不能为0:ε为0表示只受以前Y的历史的影响不受其他因素影响)
yt=φ1yt-1+φ2yt-2+……+φpyt-p+εt
式中假设:yt的变化主要与时间序列的历史数据有关,与其它因素无关;
εt不同时刻互不相关,εt与yt历史序列不相关。 式中符号:p模型的阶次,滞后的时间周期,通过实验和参数确定; yt当前预测值,与自身过去观测值yt-1、…、yt-p是同一序列不同时刻的随机变量,相互间有线性关系,也反映时间滞后关系; yt-1、yt-2、……、yt-p同一平稳序列过去p个时期的观测值; φ1、φ2、……、φp自回归系数,通过计算得出的权数,表达yt依赖于过去的程度,且这种依赖关系恒
基于ARIMA模型对我国能源需求的预测
基于ARIMA模型对我国能源需求的预测
第9期(总第108期)2008年9月
统计教育
StatisticalThinktank
No.9
(SeriesNo.108)Sep.2008
基于ARIMA模型对我国能源需求的预测
杜雨潇
摘
要:本文利用时间序列的建模方法,对我国1987-2006年的能源消费总量数据进行了实证分析,构建了经检验该模型能够很好的拟合全社会对于能源的需求趋势。在此基础上作了短期预测,最后给出了ARIMA模型。结论及建议。
关键词:能源需求;预测;ARIMA模型
PredicationofChina'sEnergyDemandBasedonARIMAModel
DuYuxiao
Abstract:Thispaperappliesthemethodofestablishingtime-seriesmodeltoempiricallyanalyzeChina'sgrossenergyconsumptionandestablishesARIMAmodelwhichistestedtobetterworkoutthetrendofsociety'senergydemand.Basedonthis,thispapermakesashort-termpre