一元一次函数的图像和性质
“一元一次函数的图像和性质”相关的资料有哪些?“一元一次函数的图像和性质”相关的范文有哪些?怎么写?下面是小编为您精心整理的“一元一次函数的图像和性质”相关范文大全或资料大全,欢迎大家分享。
19.2.2一次函数(2)一次函数的图像和性质
提问复习 1、什么叫正比例函数、一次函数?它 们之间有什么关系? 一般地,形如 y=kx(k是常数,k≠0) 的函数, 叫做正比例函数; 一般地,形如 y=kx+b(k,b是常数,k≠0) 的函数,叫 做一次函数。
当b=0时,y=kx+b就变成了 y=kx ,所以说正 比例函数是一种特殊的一次函数。 2、正比例函数的图象是什么形状? 正比例函数的图象是(经过原点的一条直线
)
3、正比例函数 y=kx(k是常数,k≠0)中, k的正负对函数图象有什么影响?y=kx 图 象y
性 质经过一、三象限 y随x增大而增大
K>0y
x
K<0
x
经过二、四象限 y随x增大而减小
既然正比例函数是特殊的一次 函数,正比例函数的图象是直线, 那么一次函数的图象也会是一条直 线吗? 它们图象之间有什么关系? 一次函数又有什么性质呢?
探索新知1、认识一次函数的图像画图:请大家用描点法在同一坐标系中画出函数函数y=-2x, y=-2x+3,y=-2x-3的图象。
1、列表 x y=-2x
2、描点 … -2 … 4 -1 0
3、连线 2 … -2 -4 … 1 -1 … 1
25 -1
03
y=-2x+3 … 7 y=-2x-3 … 1
-3 -5 -7 …
比一比:正比例函
一次函数的图像和性质(说课稿)
《一次函数的图像和性质(1)》说课稿 珠海市九洲中学 裴红梅 新课标理念下的数学教学,是师生之间、学生之间交流互动与共同发展的过程。 基于以上的教育教学理念,我对新人教版教科书八年级上册第十一章《一次函数》中《一次函数的图象和性质》第一节的知识做了教材分析、目标分析、学情分析、教法分析与学法指导、教学过程分析及教学评价等六个方面的分析。 下面我将结合这六个方面向各位专家、老师汇报我是如何分析教材和设计教学过程的。 一、教材分析 1、教材的地位和作用 本节课的教学内容是一次函数的图象和性质,它是正比例函数图象与性质的推广,在许多方面与正比例函数的图象与性质有着紧密联系。本节课是继续学习反比例函数、二次函数的图象和性质的重要基础,也是学习高中代数、解析几何以及其他数学分支的重要基础。 2、教学重点与难点 教学重点:一次函数的图象和性质。 教学难点:由函数的图象归纳得出函数的性质及对性质的理解。 3、教材处理 本节课是一节新知探究课。为了使学生在探索的过程中理解并掌握一次函数的图象和性质,我将会充分调动学生的学习积极性,引导学生开展观察、猜想、操作、比较、归纳、交流等多种形式的活动。 二、目标分析 认知 掌握一次函数图象的画法。 目标 理解一
一次函数的图像和性质教学反思
篇一:一次函数图像教学反思
一次函数图像教学反思
一次函数图像>教学反思(一)
教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图像的对应关系应让学生动手去实践,去发现,对一次函数的图象是一条直线应让学生自己得出。在得出结论之后,让学生能运用 “ 两点确定一条直线 ” ,很快做出一次函数的图像。在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力。
根据学生状况,教学设计也应做出相应的调整 . 如第一环节:探究新知,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是 y=kx+b ,那么,一个一次函数对应的图形具有什么特征呢?今天我们就研究一次函数对应的图形特征 — 本节课是学生首次接触利用数形结合的思想研究一次函数图象和性质,对他们而言观察对象、探索思路、研究方法都是陌生的,因而在教学过程中我通过问题情境的创设,激发学生的学习兴趣,引导学生观察一次函数的图像,探讨一次函数的简单性质,逐步加深学生对一次函数及性质的认识。本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件求出
一元一次函数的综合应用
一元一次函数的综合应用
一.选择题:
1
1.已知点(-4,y1),(2,y2)都在直线y= - x+2上,则y1 y2大小关系是( )
2
A. y1 > y2 B. y1 = y2 C.y1 < y2 D. 不能比较 2.下列各图给出了变量x与y之间的函数是 ( )
3.直线y=kx+b经过一、二、四象限,则k、b应满足 ( ) A. k>0, b<0 B. k>0, b>0 C. k<0, b<0; D. k<0, b>0 4.已知一次函数y= ax+4与y = bx-2的图象在x轴上相交于同一点,则
11
A.4 B.-2 C. D. - 22
5.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )
A
B
CD
o x o x o x o x y y y y a的值是( ) b
A B C D 6. (2008湖北仙桃等) 如图,三个大小相同的正方形拼成六边形点
出发沿着
→
→
→
→
,一动点
.运动过程中
从的面
方向匀速运动,最后到达点
积()随时间(t)变
0>0>初二备课教案一次函数图像性质
初中数学
名思教育个性化学习中心 名思教育个性化学习中心 教育
学生姓名 日 期
年 级 时间段 理解一次函数图像性质 理解一次函数图像性质 一次函数的图像是一条直线 一次函数的图像是一条直线
初二
科
目
数学 贺国庆
班主任 课 时
辅导教师
教学目标 教学重点 教学难点 教学难点
一次函数的图像在坐标系中的平移规律 一次函数的图像在坐标系中的平移规律 一次函数的图像作法: 通过如下 3 个步骤 (1)列表 (2)描点;[一般取两个点,根据“两点确定一条直线”的道理]; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道 2 点,并
教
连成直线即可。 (通常找函数图像与 x 轴和 y 轴的交点分别是-k/b 与 0,0 与 b) y=kx+b 时: y=kx 时(即 b 等于 0,y 与 x 成正比)
学
当 k>0 时,直线必通过一、三象限,y 随 x 的增大而增大; 当 k<0 时,直线必通过二、四象限,y 随 x 的增大而减小。 k,b 与函数图像所在象限: 当 k>0,b>0, 这时此函数的图象经过一,二,三象限。
过
当 k>0,b<0, 这时此函数的图象经过一,三,四象限。 当 k<0,b>0, 这时此函数
初二备课教案一次函数图像性质
初中数学
名思教育个性化学习中心 名思教育个性化学习中心 教育
学生姓名 日 期
年 级 时间段 理解一次函数图像性质 理解一次函数图像性质 一次函数的图像是一条直线 一次函数的图像是一条直线
初二
科
目
数学 贺国庆
班主任 课 时
辅导教师
教学目标 教学重点 教学难点 教学难点
一次函数的图像在坐标系中的平移规律 一次函数的图像在坐标系中的平移规律 一次函数的图像作法: 通过如下 3 个步骤 (1)列表 (2)描点;[一般取两个点,根据“两点确定一条直线”的道理]; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道 2 点,并
教
连成直线即可。 (通常找函数图像与 x 轴和 y 轴的交点分别是-k/b 与 0,0 与 b) y=kx+b 时: y=kx 时(即 b 等于 0,y 与 x 成正比)
学
当 k>0 时,直线必通过一、三象限,y 随 x 的增大而增大; 当 k<0 时,直线必通过二、四象限,y 随 x 的增大而减小。 k,b 与函数图像所在象限: 当 k>0,b>0, 这时此函数的图象经过一,二,三象限。
过
当 k>0,b<0, 这时此函数的图象经过一,三,四象限。 当 k<0,b>0, 这时此函数
2.5.1 一元一次不等式与一次函数
北师大版八年级数学下册
课题:2.5.1 一元一次不等式与一次函数 课型:新授课 年级:八年级下册 教学目标:
1. 通过做函数图象、观察函数图象,使学生进一步理解函数的概念,体会一元一次等式与
一元一次函数的内在联系.掌握用函数图象求一元一次不等式的解集的方法. 2、能够用图像法解一元一次不等式.
3、理解两种方法的关系,会选择适当的方法解一元一次不等式
教学重点与难点:
重点:一元一次不等式与一次函数的联系.
难点:利用一次函数图像确定一元一次不等式的解集. 课前准备:
教具:教材,课件,电脑. 学具:教材,练习本.
教法及学法指导:
教法:为了调动学生学习积极性,充分体现课堂教学的主体性,本节课采用“探究式教学”,以学生为主体,教师引导,学生自主探索和小组合作相结合的方式.让学生通过自主探究,体验发现新知识的快乐;通过小组讨论,在讨论交流中体验学习的快乐,在合作的友好氛围中让学生更有机会体验自己与他人的想法的相同点和不同点,从而掌握知识,发展技能,获得愉快的心理体验.
学法:利用独立思考与小组合作讨论相结合等多种方式学习本课新知;通过比赛的方式完成
达标练习.
教学过程:
一、教师寄语——引起重视
活动内容: 教师寄语:
我们的人生就要像K大于零时的一次函
19.2.2 一次函数与一元一次方程
19.2.2 一次函数与一元一次方程
一、 教学目标
1.用函数观点认识一元一次方程. 2.用函数的方法求解一元一次方程. 3.加深理解数形结合思想. 二、重点难点 教学重点
1.函数观点认识一元一次方程. 2.应用函数求解一元一次方程. 教学难点
用函数观点认识一元一次方程. 三、合作探究
Ⅰ.提出问题,创设情境 我们来看下面两个问题: 1.解方程2x+20=0
2.当自变量x为何值时,函数y=2x+20的值为0? 这两个问题之间有什么联系吗?
我们这节课就来研究这个问题,并学习利用这种关系解决相关问题的方法. Ⅱ.导入新课
我们首先来思考上面提出的两个问题.在问题1中,解方程2x+20=0,?得x=?-10.解决问题2就是要考虑当函数y=2x+20的值为0时,所对应的自变量x为何值.这可以通过解方程2x+20=0,得出x=-10.因此这两个问题实际上是一个问题.
从函数图象上看,直线y=2x+20与x轴交点的坐标(-10,0),这也说明函数y=2x+20值为0对应的自变量x为-10,即方程
19.2.3 一次函数与一元一次方程
19.2.3 一次函数与一元一次方程导学案
展示你的风采 1.一次函数 y 2 x 1 ,当 x 当x 时,y 0 ; 当x 时, y 3 ; 鼓励学 时,y 1 。生动脑
展 示 研 究
2. 某天,小明来到体育馆看球赛,进场时发 现门票还在家里,此时离比赛开始还有 25 分钟, 于是立即步行回家取票同时他父亲从 家里出发骑自行车以他 3 倍的速度给他送 票,两人在途中相遇,相遇后小明立即坐父 亲的自行车赶回体育馆,途中线段 AB,OA 分 别表示父子俩送票、 取票过程中离体育馆的 路程 S(米)与所用时间 t (分钟)之间的 函数关系,结合图像解答下列问题(假设骑 自行车和步行的速度保持不变): (1) 求点 B 的坐标和 AB 所在直线的函数关系 式。(2)小明能否在比赛开始前返回体育馆?
S( 36 米 A )00 B O 15 t( 分 )
1、直线 y x 3 与 y
轴的交点是(
巩 固 提 升
※ 提醒学生应 A(0,3) B(0,1) C(3,0) D(1,0) 用 一 次 函 数 的定义和性 2、直线 y kx 3 与 x 轴的交点是(1,0 ), 质
)
则 k 的值是( A、3 B、2
) C
一次函数及其性质
(2012年1月最新最细)2011全国中考真题解析考点汇编☆一次函数及其性质 一、选择题
1. (2011新疆乌鲁木齐,5,4)将直线y=2x向右平移1个单位后所得图象对应的函数解析式为( ) A、y=2x-1 B、y=2x-2 C、y=2x+1 D、y=2x+2 考点:一次函数图象与几何变换。 专题:探究型。
分析:根据函数图象平移的法则进行解答即可.
解答:解:直线y=2x向右平移1个单位后所得图象对应的函数解析式为y=2(x-1), 即y=2x-2. 故选B.
点评:本题考查的是一次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.
2. (2011南昌,8,3分)已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值
可以是( ) A.﹣2 B.﹣1 C.0 D.2
考点:一次函数图象与系数的关系. 专题:探究型.
分析:根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.
解答:解:∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选D.
点评