不会列一元一次方程应用题怎么办?
“不会列一元一次方程应用题怎么办?”相关的资料有哪些?“不会列一元一次方程应用题怎么办?”相关的范文有哪些?怎么写?下面是小编为您精心整理的“不会列一元一次方程应用题怎么办?”相关范文大全或资料大全,欢迎大家分享。
一元一次方程应用题
一元一次方程比例问题 1、
某冷饮店有A、B、C三种冷饮共销售300个,它们的销售量
的比是2:3:1,求三种冷饮各销售多少个? 2、
为了增强学生的环保意识,学校组织学生参加植树活动,松树、
柏树和柳树树苗共栽900棵,其中柏树是松树的2倍,柳树是柏树的3倍,问松树、柏树和柳树各栽多少棵? 3、
一个三角形三边度的比是3:4:5,最短的边比最长的边短4,
求三角形的周长? 4、
A、B两人共同加工某种零件100个,两人加工的零件个数比
为2:3,求两人各加工多少个零件? 5、
某种中药含有A、B、C、D四种草药成分,它们的质量比是
0.7:1:2:4.7,现要配制这种中药2100克,求A、B、C、D这四种草药分别需要多少克? 6、
甲、乙、丙三村合修一条公路,计划出工84人,按3:4:7
出工,求各村出工的人数? 7、
一箩筐内有橘子、梨、苹果共400个,它们的数量比是1:2:
5,求各自的数量? 8、
甲、乙、丙三辆卡车所运货物的吨数的比是6:7:4.5,已知
甲车比丙车多运货物12吨,则三辆车共运货物多少吨? 一元一次方程数字问题 1、
一个两位数的个位数是6,将其个位数与十位数互换后得到的
新两位数比原两位数的4倍少3,则原两位数的十位数字是多少?
列一元一次方程解应用题 - 图文
中小学1对1课外辅导专家
精锐教育学科教师辅导讲义
课 题 教学目标 列一元一次方程解应用题 1、 学会找出简单应用题中的未知量和已知量; 2、 学会找出简单应用题中的数量关系和等量关系; 3、 初步学会列方程解简单的应用题; 4、 了解“未知”可以转化为“已知”的转化思想。 教学内容 一、知识梳理 列方程解应用题的一般步骤: 审题---设元---列方程---解方程---解释 一、例题分析 1、 行程及流水问题: 例1、甲、乙两人从同一村庄步行去县城,甲比乙早出发1小时,而晚到1小时;甲每小时走4千米,乙每小时走6千米。求从村庄到县城的路程(行程与时间问题如何设元,如何找等量关系) 练习1:在一次环城自行车比赛中,速度最快的运动员在出发后35分时刻第一次遇到速度最慢的运动员,已知最快的运动员的速度是最慢的运动员的1.2倍,环城一周为7千米。求两个运动员的速度。 练习2、某工人每天早晨在同一时刻从家里骑车去工厂上班,如果以每小时16千米的速度行驶,则可在上班时刻前15分钟到达工厂
一元一次方程应用题集锦
篇一:一元一次方程应用题精选(带答案)
一元一次方程应用题精选(带答案)
1.有一旅客携带了30公斤行李从南京禄口国际机场乘飞机去天津,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格应是( ).
A.1000元 B.800元 C.600元 D.400元
2.某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米 ,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为x小时,则可列方程得(_________________________)
3.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期成,问规定日期为﹙﹚天
A.3B.4C.5 D.6
4.小王去早市为餐馆选购蔬菜,他指着标价为每斤3元的豆角问摊主:“这豆角能便宜吗?”摊主:“多买按八折,你要多少斤?”小王报了数量后摊主同意按八折卖给小王,并说:“之前一人只比你少买5斤就是按标价,还比你多花了3元呢!”小王购买豆角的数量是()
A.25斤 B.20斤C.30斤D.15斤
5.如图,宽为50cm的矩形图
一元一次方程应用题集锦
一元一次方程应用题集锦 陈永杰
1、用直径为4厘米的圆钢,铸造三个直径为2厘米,高为16厘米的圆柱形零件,问需要截取多长的圆钢?
2、有一块棱长为4厘米的正方体铜块,要将它熔化后铸成长2厘米、宽4厘米的长方体铜块,铸成后的铜块的高是多少厘米(不计损耗)?
3、某工厂锻造直径为60毫米,高20毫米的圆柱形瓶内装水,再将瓶内的水倒入一个底面直径6厘米、高10厘米的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离。
4、将一罐满水的直径为40厘米,高为60厘米的圆柱形水桶里的水全部灌于另一半径为30厘米的圆柱形水桶里,问这时水的高度是多少?
5、一个长、宽、高分别是9厘米、7厘米、3厘米的长方体铁块和一个棱长为5厘米的正方体铁块,熔化成一个圆柱体,其底面直径为20厘米,请求圆柱体的高(π取3.14)
6、用5.2米长的铁丝围成一个长方形,使得长比宽多0.6米,求围成的长方形的长和宽为多少米?
7、一个直径为1.2米高为1.5米的圆柱形水桶,已装满水,向一个底面边长为1米的正方形铁盒倒水,当铁盒装满水时,水桶中的水高度下降了多少米。
8、长方形的
一元一次方程应用题集锦
一元一次方程应用题集锦 陈永杰
1、用直径为4厘米的圆钢,铸造三个直径为2厘米,高为16厘米的圆柱形零件,问需要截取多长的圆钢?
2、有一块棱长为4厘米的正方体铜块,要将它熔化后铸成长2厘米、宽4厘米的长方体铜块,铸成后的铜块的高是多少厘米(不计损耗)?
3、某工厂锻造直径为60毫米,高20毫米的圆柱形瓶内装水,再将瓶内的水倒入一个底面直径6厘米、高10厘米的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离。
4、将一罐满水的直径为40厘米,高为60厘米的圆柱形水桶里的水全部灌于另一半径为30厘米的圆柱形水桶里,问这时水的高度是多少?
5、一个长、宽、高分别是9厘米、7厘米、3厘米的长方体铁块和一个棱长为5厘米的正方体铁块,熔化成一个圆柱体,其底面直径为20厘米,请求圆柱体的高(π取3.14)
6、用5.2米长的铁丝围成一个长方形,使得长比宽多0.6米,求围成的长方形的长和宽为多少米?
7、一个直径为1.2米高为1.5米的圆柱形水桶,已装满水,向一个底面边长为1米的正方形铁盒倒水,当铁盒装满水时,水桶中的水高度下降了多少米。
8、长方形的
列一元一次方程解应用题专题复习
列一元一次方程解应用题的几种常见题型及其特点
列一元一次方程解应用题是七年级数学教学中的一大重点,而列一元一次方程解应用题又是学生从小学升入中学后第一次接触到用代数的方法处理应用题。因此 ,认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题大有帮助。因此将列一元一次方程解应用题的几种常见题型及其特点归纳下来,如下: (1)和、差、倍、分问题。 此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。类似于:甲乙两数之和56,甲比乙多3(乙是甲的1/3),求甲乙各多少?这样的问题就是和倍问题。问题的特点是,已知两个量之间存在合倍差关系,可以求这两个量的多少。基本方法是:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。
(2)等积变形问题。 此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。
(3)调配问题。 从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。
(4)行程问题。 要掌握行程中的基本关系:路程=速度×时间。
相遇问题(相向而
一元一次方程方程应用题总结归类
全面,条理清晰
一元一次方程方程应用题总结归类
列方程解应用题,是初中数学的重要内容之一。许多实际问题都归结为
解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解
决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见
的数学问题加以阐述,希望对同学们有所帮助.
一 行程问题:
基本量、基本数量关系:路程=速度×时间,顺水速=静水速+水速,
逆水速=静水速-水速,寻找相等关系的方法:抓住两码头之间的距离不变,水流速度,船在静水中的速度不变的特点来考虑。
(1)相向问题,寻找相等关系的方法:甲走的路程+乙走的路程=两地
距离
(2)追击问题:寻找相等关系的方法:第一,同地不同时出发:前者
走的路程=追者走的路程;第二,同时不同地出发:前者走的路程+两地距离
=追者所走的路程
(3)航行问题:
(4)飞行问题:
1、火车提速后由天津到上海的时间缩短了7.42h,若天津到上海的路程为
1326km,提速前火车的平均速度为xkm/h,提速后火车的平均速度为ykm/h,x、y应满足的关系式为:
2、甲、乙骑自行车同时从相距65千米的两地相向而行,2小时相遇.甲比
乙每小时多骑2.5千米,求乙的时速各是多少?
全面,条理清晰
3、一列客车长200米,一列货车
一元一次方程应用题——工程问题
一元一次方程应用题----工程问题
1.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共话12天完成,问乙做了几天
2.一项工程,甲单独做需要10天完成,
乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成
3.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五
4. 已知某水池有进水管与出水管一根,
进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;
(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几
(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几
(3)如果将两管同时打开,每小时的效果如何如何列式
(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间
5. 有一个水池,用两个水管注水。如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池。
①如果甲、乙两管先同时注水20分钟,
然后由乙单独注水。问还需要多少时间才能把水池注满
②假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。如果三管同时开放,多少小时才能
一元一次方程应用题——行程问题
填一填A,B两地相距50千米,10 小时走完. 如果小王每小时走5千米,则需______25 如果小李6小时走完,则他每小时走____ 3 千米.
行程问题
行程问题中的基本关系量有哪些? 它们有什么关系?
路程速度
时间
= = =
速度路程
× 时间
÷ 时间÷ 速度
路程
例1 甲、乙两地相距1 500千米,两辆汽车同时从两地相向而行, 其中吉普车每小时行60千米,是另一辆客车的1.5倍. ①几小时后两车相遇? ②若吉普车先开40分钟,那么客车开出多 长时间两车相遇?
甲相 遇
乙
分析:若两车同时出发,则等量关系为:吉普车的路程+客车的路程=1500
例1 甲、乙两地相距1 500千米,两辆汽车同时从两地相向而 行,其中吉普车每小时行60千米,是另一辆客车的1.5倍. ①几小时后两车相遇?
分析:若两车同时出发,则等量关系为:吉普车的路程+客车的路程=1500解:设两车x小时后相遇,依题意可得
60x+(60÷1.5)x=1500解得:x=15 答:15小时后两车相遇。
例1 甲、乙两地相距1 500千米,两辆汽车同时从两地相向而 行,其中吉普车每小时行60千米,是另一辆客车的1.5倍. ①几小时后两车相遇? ②若吉普车先开40
一元一次方程应用题——行程问题
填一填A,B两地相距50千米,10 小时走完. 如果小王每小时走5千米,则需______25 如果小李6小时走完,则他每小时走____ 3 千米.
行程问题
行程问题中的基本关系量有哪些? 它们有什么关系?
路程速度
时间
= = =
速度路程
× 时间
÷ 时间÷ 速度
路程
例1 甲、乙两地相距1 500千米,两辆汽车同时从两地相向而行, 其中吉普车每小时行60千米,是另一辆客车的1.5倍. ①几小时后两车相遇? ②若吉普车先开40分钟,那么客车开出多 长时间两车相遇?
甲相 遇
乙
分析:若两车同时出发,则等量关系为:吉普车的路程+客车的路程=1500
例1 甲、乙两地相距1 500千米,两辆汽车同时从两地相向而 行,其中吉普车每小时行60千米,是另一辆客车的1.5倍. ①几小时后两车相遇?
分析:若两车同时出发,则等量关系为:吉普车的路程+客车的路程=1500解:设两车x小时后相遇,依题意可得
60x+(60÷1.5)x=1500解得:x=15 答:15小时后两车相遇。
例1 甲、乙两地相距1 500千米,两辆汽车同时从两地相向而 行,其中吉普车每小时行60千米,是另一辆客车的1.5倍. ①几小时后两车相遇? ②若吉普车先开40