大一高数课本电子版同济七版

“大一高数课本电子版同济七版”相关的资料有哪些?“大一高数课本电子版同济七版”相关的范文有哪些?怎么写?下面是小编为您精心整理的“大一高数课本电子版同济七版”相关范文大全或资料大全,欢迎大家分享。

同济大一高数期中复习题

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

高数复习题高数复习高数考试高数题目同济高数

一、常数项无穷级数

1. lim un = 0 是级数 ∑ un 收敛的 .n →∞n =1

条件. 条件.

解:必要非充分. 必要非充分.

ln n 3 2. ∑ n = . n=0 2

.

解:公比 q =

ln 3 1 < 1 的等比级数收敛且和 s = . 2 1 ln 3 2∞

1 3.对于无穷级数 ∑ 2 p ,下面中正确的是 [ ]. . . n =1 n (A) 仅当 p > 1 时收敛; 时收敛; (B) 仅当 p < 1 时收敛; 时收敛;(C) 仅当 p = 1 时收敛; 时收敛; (D) 仅当 p > 1 2 时收敛. 时收敛. ∞ 1 时级数收敛. 解: p 级数 ∑ 2 p 仅在 2 p > 1 ,即 p > 1 2 时级数收敛. n =1 n

高数复习题高数复习高数考试高数题目同济高数

4.若 ∑ | un | 收敛,则下面命题中不正确的是 . 收敛,

[

]. .

(A) ∑ un 必收敛; 必收敛;n =1

∞ n =1

(B) | un | 必单调减少; 必单调减少;

(C) lim un = 0 ;n →∞

(D) ∑ ( 1) un 必收敛.

大一高数同济版期末考试题(精)- 副本

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

高等数学上(1)

一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. 设f(x)?cosx(x?sinx),则在x?0处有( ).

(A)f?(0)?2 (B)f?(0)?1(C)f?(0)?0 (D)f(x)不可导.

1?x2. 设?(x)?1?x,?(x)?3?33x,则当x?1时(  ).

(A)?(x)与?(x)是同阶无穷小,但不是等价无穷小; (B)?(x)与?(x)是等价无穷小;

(C)?(x)是比?(x)高阶的无穷小; (D)?(x)是比?(x)高阶的无穷小.

x3. 若

F(x)??0(2t?x)f(t)dt,其中f(x)在区间上(?1,1)二阶可导且

f?(x)?0,则( ).

(A)函数F(x)必在x?0处取得极大值;

(B)函数F(x)必在x?0处取得极小值;

(C)函数F(x)在x?0处没有极值,但点(0,F(0))为曲线y?F(x)的拐点;(D)函数F(x)在x?0处没有极值,点(0,F(0))也不是曲线y?F(x)的拐点。4.

设f(x)是连续函数,且 f(x)?x?2?10f(t)dt , 则f(x)?(x2x2(A)2 (B)2?2(C)x?1

大一高数(上)

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

姓名:班级:学号:

第一章 函数、极限、连续(小结)

一、函数

1. 邻域:U(a),U(a) 以a为中心的任何开区间; 2. 定义域:y?tanx{x?k??};y?cotx{x?k?};

??2y?arctanx{x?R,y?(?,)};y?arcsinx{x?[?1,1],y?[?,]}

2222 y?arccosx{x?[?1,1],y?[0,?]}.

二、极限

1. 极限定义:(了解)

????limxn?a? 若对于???0,?N?Z?,st. 当n?N时,有|xn?a|??;

n??Note:|xn?a|???n??

x?x0limf(x)?A????0,???0,st. 当0?x?x0??时,有f(x)?A??;

Note:f(x)?A???x?x0??

limf(x)?A????0,?X?0,st. 当x?X时,有f(x)?A??;

x??Note:f(x)?A???x?? 2.函数极限的计算(掌握)

??f(x)?A?f(x0f(x)?A;(1) 定理: lim(分段函数) )?f(x0)?lim??x?x0x?x0x2?13?x?1?x0(2)型:①约公因子,有理化; 比如:lim3,lim;

x?1x?1x

大一高数习题和答案

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

一、选择题

1、某质点作直线运动的运动学方程为x?3t?2t2(SI), 则该

质点作 ( ) (A) 匀加速直线运动,加速度沿x正方向. (B) 匀加速直线运动,加速度沿x负方向. (C) 匀减速直线运动,加速度沿x正方向. (D) 匀减速直线运动,加速度沿x负方向.

2、物体在恒力F作用下作直线运动,在时间?t1内速率由v增加到2v,在时间?t2内速率由2v增加到3v,设F在?t1内的冲量是I1,在?t2内的冲量是I2,那么 ( ) (A)I1?I2 (B) I1?I2

(C) I1?I2 (D) 不能确定

3、物体在恒力F作用下作直线运动,在时间?t1内速度由v增

3v,设F在?t1内加到2v,在时间?t2内速度由2v增加到作的功是W1,在?t2内作的功是W2,那么 ( ) (A) W1?W2 (B) W1?W2

(C) W1?W2 (D) 不能确定

??F4、关于电场强度定义式E?q0,下列说法中哪个是正确

的?

大一高数复习资料

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

高等数学(本科少学时类型)

第一章 函数与极限

第一节 函数

○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) EMBED Equation.3 ??

EMBED Equation.3 ??

第二节 数列的极限

○数列极限的证明(★)

【题型示例】已知数列 EMBED Equation.3 ??,证明?? EMBED Equation.3 ????

??

【证明示例】?? EMBED Equation.3 ??????语言

1.由?? EMBED Equation.3 ????化简得?? EMBED Equation.3 ??????,

??

∴?? EMBED Equation.3 ????

??

2.即对?? EMBED Equation.3 ??????,?? EMBED Equation.3 ????,当?? EMBED Equation.3

??

??????时,始终有不等式?? EMBED Equation.3 ????成立,

??

∴?? EMBED Equation.3 ????

??

第三节 函数的极限

○ EMBED Equation.3 时函数极限的证明(★)

【题型示例】已

高数练习同济版

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

练习一

一.填空题(每小题4分,共24分)

?xy,(x,y)?(0,0),?221.函数f(x,y)??x?y 在点(0,0)处 .

?0,(x,y)?(0,0)?(A)有二重极限但不连续.

(C)连续但不可偏导.

(B)不连续但可偏导. (D)连续且可偏导.

2.三元函数u?sin(xy)?cos(yz)在点?1,????,1?处的全微分4?du? .

?z?x2?2y2, 3.曲线?在点(1,1,3)处的一个单位切向量

x?2y?z?6?为 .

x2y24.设平面区域D:2?2?1?a?0,b?0?,则??(x?y)5d?? .

abD5.设曲线L是三角形ABC区域的的正向边界,其中A、B、C的坐标分

别为(?1,0)、(1,0)、(0,1),则2ycos2xdx?(sinxcosx?x)dy? .

?L6.设an?(A)

(?1)n?1n?n?1,?2,??,则以下级数中收敛的是 .

2n??(?1)n?1?n?1an. (B)?a. (C)?anan?1.

n?1n?1(D)

??an?1?

大一高数微积分下册答案

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

第六章 定积分

§6.1~6.2 定积分的概念、性质

一、填空题

1、设f(x)在[a,b]上连续,n等分[a,b]:a?x0?x1??xn?1?xn?b,并取小区

nb?ab?a)??间左端点xi?1,作乘积f(xi?1)?,则lim?f(xi?1n??nni?1??2baf(x)dx.

2、根据定积分的几何意义,

??20xdx?2,

?1?11?x2dx?,

??sinxdx??0.

3、设f(x)在闭区间[a,b]上连续,则

?baf(x)dx??f(t)dt?ab0.

二、单项选择题

1、定积分

?baf(x)dx (C) .

(A) 与f(x)无关 (B) 与区间[a,b]无关 (C) 与变量x采用的符号无关 (D) 是变量x的函数 2、下列不等式成立的是 (C) . (A) (C)

?21x2dx??x3dx (B) ?lnxdx??(lnx)2dx

111222?10xdx??ln(1?x)dx (D) ?edx??(1?x)dx

00011x13、设f(x)在[a,b]上连续,且

?baf(x)dx?0,则 (C)

大一高数复习资料【全】(1)

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

高等数学(本科少学时类型) 第一章 函数与极限

第一节 函数

○函数基础(高中函数部分相关知识)

(★★★) ○邻域(去心邻域)(★) U a, x|x a

U a, x|0 x a

始终有不等式f x A 成立,

f x A ∴limx

第二节 数列的极限 ○数列极限的证明(★)

【题型示例】已知数列 xn ,证明lim xn a x

【证明示例】 N语言

1.由xn a 化简得n g ,

∴N g

2.即对 0, N g 。当n N时,

始终有不等式xn a 成立,

xn a ∴limx

第三节 函数的极限

○x x0时函数极限的证明(★) 【题型示例】已知函数f x ,证明

limf x A x x

第四节 无穷小与无穷大

○无穷小与无穷大的本质(★)

函数f x 无穷小 limf x 0 函数f x 无穷大 limf x ○无穷小与无穷大的相关定理与推论

(★★)

(定理三)假设f x 为有界函数,g x 为

无穷小,则lim f x g x 0 (定理四)在自变量的某个变化过程中,若f x 为无穷大,则f 1 x 为无穷小;反之,若f x 为无穷小,且

f x 0,

高数同济五版(47)

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

习题6?3

1? 由实验知道? 弹簧在拉伸过程中? 需要的力F(单位? N)与伸长量s(单位? cm)成正比? 即F?ks (k为比例常数)? 如果把弹簧由原长拉伸6cm? 计算所作的功?

解 将弹簧一端固定于A? 另一端在自由长度时的点O为坐标原点? 建立坐标系? 功元素为dW?ksds? 所求功为

126 W??ksds?ks?18k(牛?厘米)?

0206 2? 直径为20cm、高80cm的圆柱体内充满压强为10N/cm2的蒸汽? 设温度保持不变? 要

使蒸汽体积缩小一半? 问需要作多少功? 解 由玻?马定律知?

PV?k?10?(?102?80)?80000??

P(x)?[(?102)(80?x)]?80000?? P(x)?80080?? 设蒸气在圆柱体内变化时底面积不变? 高度减小x厘米时压强 为P(x)牛/厘米2? 则

?

功元素为dW?(??102)P(x)dx? 所求功为 W??400408001dx?800?ln2(J)?

(??10)?dx?80000??080??80??2 3? (1)证明? 把质量为m

高数同济五版(7)

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

习题12?4

1? 求下列微分方程的通解? (1)

dy?y?e?x? dx?dxdx 解 y?e?(e?x?e?dx?C)?e?x(e?x?exdx?C)?e?x(x?C)?

?? (2)xy??y?x2?3x?2?

解 原方程变为y??1y?x?3?2xx?

1 y?e??1xdx[?(x?3?2?xdxx)?edx?C] ?1x[?(x?3?21x)xdx?C]?x[?(x2?3x?2)dx?C] ?11332x(3x?2x?2x?C)?13x2?3C2x?2?x? (3)y??ycos x?e?sin x?

解 y?e??cosdx(?e?sinx?e?cosxdxdx?C)

?e?sixn(?e?sixn?esinxdx?C)?e?sixn(x?C)?

(4)y??ytan x?sin 2x?

解 y?e??tanxdx(?sin2x?e?tanxdxdx?C)

?elncosx(?sin2x?e?lncoxsdx?C)

?cosx(?2sinxc