浮点数二进制表示举例
“浮点数二进制表示举例”相关的资料有哪些?“浮点数二进制表示举例”相关的范文有哪些?怎么写?下面是小编为您精心整理的“浮点数二进制表示举例”相关范文大全或资料大全,欢迎大家分享。
浮点数的二进制表示
浮点数的二进制表示 课题报告
学生姓名: 冯瑜
班 级: 071132
院 系: 机械与电子信息学院
指导老师: 杨勇
2016年3月12日
一、浮点数二进制表示的意义
浮点数表示形式使用“符号—数值”格式,在编码前增加了指数偏移,“符号—数值”格式对于浮点算术运算需要的算法更为方便,偏移后的指数简化了用于操作数欲对齐中指数比较的硬件。
二、浮点数在计算机内存中的存储格式
对于浮点类型的数据采用单精度类型(float)和双精度类型(double)来存储,float数据占用 32bit,double数据占用 64bit。不论是float类型还是double类型,在计算机内存中的存储方式都是遵从IEEE规范,float遵从的是IEEE R32.24,而double遵从的是R64.53。
无论是单精度还是双精度,在内存存储中都分为3个部分:
1)符号位(Sign):0代表正,1代表为负;
2)指数位(Exponent):用于存储科学计数法中的指数数据,并且采用移位存储;
3)尾数部分(Mantissa):尾数部分;
float的存储方式:
double 型的存储方式:
四、笔算转换方法
1. 整数部分25
浮点数的二进制表示学习笔记
浮点数的二进制表示
浮点数的二进制表示学习笔记
目前C/C++编译器标准都遵照IEEE制定的浮点数表示法来进行float,double运算。这种结构是一种科学计数法,用符号、指数和尾数来表示,底数定为2——即把一个浮点数表示为尾数乘以2的指数次方再添上符号。下面是具体的规格:
符号位 阶码 尾数 长度 float 1 8 23 32 double 1 11 52 64 例一:已知:double类型38414.4,求:其对应的二进制表示。
分析:double类型共计64位,折合为8字节。由最高到最低位分别是第63、62、61、 、0位:最高位63位是符号位,1表示该数为负,0表示该数为正;62-52位,一共11位是指数位;51-0位,一共52位是尾数位。
把整数部和小数部分开处理:
整数部分直接化为二进制:(38414)D=(1001011000001110)B。
小数部分的处理:0.4=0.5*0+0.25*1+0.125*1+0.0625*0+ ,实际上这永远算不完!这就是著名的浮点数精度问题。所以直到加上前面的整数部分算够53位就行了。隐藏位
练习1 二进制运算
1. 已知[X]补=10011011是定点纯整数,写出X的浮点规格化形式,阶码4位
补码,尾数8位原码
(尾数)1 1100 101 (阶码) 0 111
2. 将-27/64表示成浮点数规格化形式,阶码3位补码,尾数9位补码
(尾数)1 0010 1000 (阶码) 1 11
3. 某浮点数字长32位,其中阶码8位,补码表示;尾数24位(含1位数符),
补码表示。现有一浮点代码(8C5A3E00)16,试写出它所表示的十进制真值
0 7 阶码 8 数符 9 31 尾数
1000 1100 0 101 1010 0011 1110 0000 0000
-
+0.10110100011111×2116
4. 将4位有效信息位1001编成CRC校验码,生成多项式X3+X1+X0,写出编码
过程,并仿书上表2-6建立出错模式
5. 试将(-0.1101)2 用IEEE短实数浮点格式表示出来。
6. 已知X=0.1101,Y=-0.1011,用原码一位乘计算X×Y 7. 已知X=0.1101,Y=-0.1011,用补码一位乘计算X×Y
X×Y=-0.100
二进制中正负数表示和判断
二进制中第一位0代表正;1代表负我知道,但是给你一个二进制的数比如101
那么转化成十进制应该是多少? 5? 但不是说首位为1应该是负的吗???
谁能给我讲讲这个首位什么时候作为符号,什么时候作为数字去计算?什么时候可以直接计算,什么时候需要取反?我怎么知道它是正数还是负数?
如果你有这种疑问,那就是没有高清概念有问题,我们只有在说计算机处理数时,会用0和1代表正负,这种数称之为机器数(包括原码,反码,补码);
一:表示法:
1、正数5的表示法
假设有一个 int 类型的数,值为5,那么,我们知道它在计算机中表示为:
00000000 00000000 00000000 00000101
5转换成二制是101,不过int类型的数占用4字节(32位),所以前面填了一堆0。
2、负数-5的表示法
现在想知道,-5在计算机中如何表示?在计算机中,负数以原码的补码形式表达。
二、概念:
1、原码:一个正数,按照绝对值大小转换成的二进制数;一个负数按照绝对值大小转换成的二进制数,然后最高位补1,称为原码。
比如 00000000 00000000 00000000 00000101 是 5的 原码。
10000000 00000000 00000000 000
二进制中正负数表示和判断
二进制中第一位0代表正;1代表负我知道,但是给你一个二进制的数比如101
那么转化成十进制应该是多少? 5? 但不是说首位为1应该是负的吗???
谁能给我讲讲这个首位什么时候作为符号,什么时候作为数字去计算?什么时候可以直接计算,什么时候需要取反?我怎么知道它是正数还是负数?
如果你有这种疑问,那就是没有高清概念有问题,我们只有在说计算机处理数时,会用0和1代表正负,这种数称之为机器数(包括原码,反码,补码);
一:表示法:
1、正数5的表示法
假设有一个 int 类型的数,值为5,那么,我们知道它在计算机中表示为:
00000000 00000000 00000000 00000101
5转换成二制是101,不过int类型的数占用4字节(32位),所以前面填了一堆0。
2、负数-5的表示法
现在想知道,-5在计算机中如何表示?在计算机中,负数以原码的补码形式表达。
二、概念:
1、原码:一个正数,按照绝对值大小转换成的二进制数;一个负数按照绝对值大小转换成的二进制数,然后最高位补1,称为原码。
比如 00000000 00000000 00000000 00000101 是 5的 原码。
10000000 00000000 00000000 000
二进制与其他进制之间的转换
二进制与十进制、八进制、 二进制与十进制、八进制、十六进制之间的转换
各进制的基数、符号 各数制的权 十进制与二进制的相互转换 二进制与八进制的相互转换 二进制转与十六进制的相互转换 其他进制转换为十进制 二进制、八进制、十六进制之间的转换
各进制的基数、 各进制的基数、符号1.十进制 日常生活中最常见的是十进制数, 日常生活中最常见的是十进制数,用十个不同的符号来 表示: 表示:0、1、2、3、4、5、6、7、8、9。 基为: 基为:10 运算规则:逢十进一, 运算规则:逢十进一,借一当十 在十进制数的后面加大写字母D以示区别。 在十进制数的后面加大写字母D以示区别。 2.二进制 二进制数只有两个代码“0”和 1”, 二进制数只有两个代码“0”和“1”,所有的数据都 由它们的组合来实现。 由它们的组合来实现。 基为:2 基为: 运算规则: 逢二进一,借一当二”的原则。 运算规则:“逢二进一,借一当二”的原则。
3.八进制 使用的符号: 使用的符号:0、1、2、3、4、5、6、7; 运算规则:逢八进一; 运算规则:逢八进一; 基为: 基为:8 在八进制数据后加英文字母“O”, 在八进制数据后加英文字母“O”, 英文字母 4.十六进制 十六进制 使用
二进制及其转换教案
第11章 逻辑代数初步 11.1 二进制及其转换
【教学目标】
l、了解二进制的含义;
2、会进行二进制与十进制之间的相互转换; 【教学重点】 掌握二进制的含义 【教学难点】
会进行二进制与十进制之间的相互转换 【教学方法】
这节课主要采用探究教学和讲授法结合的教学方法,运用二进制的含义,会进行二进制与十进制之间的相互转换,使学生容易理解,同时结合习题让学生加深对逻辑运算的理解。 【教学过程】
环节 教学内容 设计意图 教师提出问题,学生回顾旧知识,做回 顾 旧 知 1、了解散点图的概念,能说出变量相关关系的含义; 2、能根据给出的回归直线方程系数公式建立回归直线方程; 3、会用科学计算器求回归系数。 出解答,教师讲解。通过回顾旧知,唤起学生对旧知识的回顾,为学习新知识做好铺垫。 1、十进制的基数是?进位规则是? 2、 二进制的基数是?每个数位上的数码个数是?数码分别是?导 入 教师提出问题.学生回顾逻辑运算的规则和真值表的进位规则是? 我们目前所接触的数都是十进制,它是用0、1、2、3、4、5、知识,概括、认识逻6、7、8、9这十个数码符号来表示的,今天我们来学习另一种常见的表示数的方法——二进制 相关概念: 辑运算律,符合职校学生的
十进制转化二进制实验报告
实 验 报 告
课程名称:算法与数据结构 题 目 :十进制转换为二进制 班 级 :电信1305 学 号 :1402130526 姓 名 :云昊
完成时间:2014年11月28日
1、实验目的和要求
本次课程设计的题目是数制转换程序,设计此题目主要目的在于加深对C语言课程理论与数据结构课程理论实践方面的理解。通过编写一定规模和难度的程序,进行一次全面的C语言编程训练,掌握数据结构的思想,提高分析问题和解决问题的能力,并提高调试程序的能力,更深一步的掌握理论应用于实践。
本次课程设计的主要任务是完成对数制转换进行编程,要求用栈实现十进制到二进制的转换,了解十进制转换为二进制的原理,熟练对栈的基本操作,用栈的基本操作实现程序的效率化。 2、实验内容
本课程设计主要解决完成数制转化问题。完成功能如下: 1)任意给一个十进制的数;
2)完成十进制到二进制的数制转换; 3)本课程设计使用数组解决,用栈实现。 3、算法基本思想
数制转换的基本原理是:将一个十进制的数,转换为二进制的数,此过程可以采用求余法进行,用这个十进制数作为被除数,用指定的数基作除数,连续求余,得出的余数依由个位到十位等的顺序组成新数,即
二进制、八进制、十进制与十六进制转换计算
二进制、八进制、十进制与十六进制 一、进制的概念 在计算机语言中常用的进制有二进制、八进制、十进制和十六进制,十进制是最主要的表达形式。 对于进制,有两个基本的概念:基数和运算规则。 基数:基数是指一种进制中组成的基本数字,也就是不能再进行拆分的数字。二进制是0和1;八进制是0-7;十进制是0-9;十六进制是0-9+A-F(大小写均可)。也可以这样简单记忆,假设是n进制的话,基数就是【0,n-1】的数字,基数的个数和进制值相同,二进制有两个基数,十进制有十个基数,依次类推。 运算规则:运算规则就是进位或错位规则。例如对于二进制来说,该规则是“满二进一,借一当二”;对于十进制来说,该规则是“满十进一,借一当十”。其他进制也是这样。 二、二、八、十、十六进制基数对照表 二进制Binary0000000100100011010001010110011110001001101010111100110111101111八进制Octal012345671011121314151617十进制Decimal0123456789101112131415十六进制Hex0123456789ABCDEF 三、二进制转化成其他进制 1.二进制(Binary
二进制、八进制、十进制和十六进制关系 - 图文
二进制、八进制、十进制和十六进制关系
二进制、八进制、十进制和十六进制关系
为什么需要八进制和十六进制?
由于数据在计算机中的表示,最终以二进制的形式存在,所以有时候使用二进制,可以更直观地解决问题。但二进制数太长了。面对太长的数进行思考或操作,没有人会喜欢。
用16进制或8进制可以解决这个问题。因为,进制越大,数的表达长度也就越短。不过,为什么偏偏是16或8进制,而不其它的,诸如9或20进制呢?
因为2、8、16,分别是2的1次方、3次方、4次方。这一点使得三种进制之间可以非常直接地互相转换。8进制或16进制缩短了二进制数,但保持了二进制数的表达特点。
假设有人问你,十进数1234为什么是一千二百三十四?你尽可以给他这么一个算式: 权值 权位 1
2
1 3 32 2 23 1 14 0 4
*
1
00 0 1034=1*10+2*10+3*10+假设有人问你,二进数10,0000为什么是十进制的32?你尽可以给他这么一个算式: 1 5 5
权值 权位 3
2
0 4 40 3 30 2 20 1 +
0
*
=1*2+0*2+0*2+0*2+0*2可以看出,所有进制换算成10进制,关键在于三个因素:进制基数、权位和权值。
2
0
如何将二、八、十六进制数转换