高等数学导学教程
“高等数学导学教程”相关的资料有哪些?“高等数学导学教程”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高等数学导学教程”相关范文大全或资料大全,欢迎大家分享。
《高等数学复习》精选教程
《高等数学复习》精选教程
《高等数学复习》精选教程
第一讲 函数、连续与极限
一、理论要求 1.函数概念与性质 2.极限
3.连续
二、题型与解法 A.极限的求法
函数的基本性质(单调、有界、奇偶、周期)
几类常见函数(复合、分段、反、隐、初等函数) 极限存在性与左右极限之间的关系 夹逼定理和单调有界定理
会用等价无穷小和罗必达法则求极限
函数连续(左、右连续)与间断
理解并会应用闭区间上连续函数的性质(最值、有界、介值)
(1)用定义求
(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法
(4)两个重要极限法
(5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法
(7)洛必达法则与Taylor级数法
(8)其他(微积分性质,数列与级数的性质)
《高等数学复习》精选教程
1.lim
arctanx xln(1 2x)
3
x 0
lim
arctanx x
2x
3
x 0
16
(等价小量与洛必达)
2.已知lim
sin6x xf(x)
x
3
x 0
0,求lim
6 f(x)
x
2
x 0
解:x 0
lim
sin6x xf(x)
x
3
lim
6cos6x f(x) xy'
3x
2
x 0
lim
36sin6x 2y' xy''
6x6
x 0
lim
216cos6x
2015年考研高等数学导学班教师版
高等数学导学班讲义(上册)
第一章:函数与极限
本章数一、数二、数三复习内容大同小异。
一、本章教材中可删掉的内容及可以不做的习题
1、 本章第一节中的集合、映射、双曲函数数一、数二、数三的考生都不用复习,相应习题不做;
2、 本章利用极限定义( N, , X)证明的题目可以不做; 3、 本章第十节中的“三、一致连续性”三类考生都不用复习。
二、本章需修改的概念
1、间断点
定义1:函数f(x)在x0的某去心邻域内有定义。在此前提下,如果函数有下列三种情况之一
① 在x0点没有定义;
② 虽在x0点有定义,但limf(x)不存在;
x x0
③ 虽在x0点有定义,且limf(x)存在,但limf(x) f(x0)
x x0
x x0
则x0叫f(x)的一个间断点。
例如:y ln(x 1),点x 1,x 2都不是间断点。 2、无穷间断点
定义2:设x0是f(x)的一个间断点,如果满足limf(x) 或limf(x) ,则x0叫
x x0
x x0
f(x)的一个无穷间断点。
例如:f(x) e
1
x 1
,则x0 1叫f(x)的一个无穷间断点。
三、关于本章一个定理的描述
本章中关于闭区间上连续函数的介值定理以下列方式描述更易把握其使用。
定理:如果f(x)在闭区间[a,b
高等数学上册导学案8397449
高等数学(上)期末复习指导 09年12月
高等数学上册导学案 目 录
第一部分 常考题型与相关知识提要 1 第二部分 理工大学01—08级高等数学(上)期末试题集(8套题) 18 01—08级高等数学(上)期末试题试题参考解答 26
第三部分 高等数学(上)期末模拟练习题(5套题) 39
模拟试题参考解答 46
第四部分 09级高等数学(上)考前最后冲刺题(1套题) 57
第一部分 常考题型与相关知识提要
题型一 求极限的题型 相关知识点提要 须熟记下列极限: (1)基本的极限:
?0, q?1? 1)limqn??, 2)limna?1,(a?0),limnn?1 1, q?1n??n??n???发散, q?1,q??1??0,n?m?anxn?
高等数学
AnnalsofMathematics,157(2003),919–938
LargeRiemannianmanifolds
whichare exible
ByA.N.Dranishnikov,StevenC.Ferry,andShmuelWeinberger*
Abstract
Foreachk∈Z,weconstructauniformlycontractiblemetriconEuclideanspacewhichisnotmodkhypereuclidean.WealsoconstructapairofuniformlycontractibleRiemannianmetricsonRn,n≥11,sothattheresultingmani-foldsZandZ areboundedhomotopyequivalentbyahomotopyequivalencewhichisnotboundedlyclosetoahomeomorphism.Weshowthatfortheself(Z)→K (C (Z))fromlocally -spacestheC -algebraassemblymapK
niteK-homologytotheK-th
高等数学(一)
编号:
《高等数学(一)》课 程 自 学 辅 导 材 料 配套教材: 《高等数学(一)微积分》 主 编: 章学诚 出 版 社: 武汉大学出版社 版 次: 2004年版 适应层次: 本 科 内 部 使 用 2012年9月 ●●●●●
目 录 第一部分 自学指导 第1章:函数及其图形…………………………………………………………………3 第2章:极限和连续……………………………………………………………………3 第3章:一元函数的导数和微分………………………………………………………3 第4章:微分中值定理和导数的应用…………………………………………………3 第5章:一元函数积分学………………………………………………………………3 第6章:多元函数微积分………………………………………………………………3 第二部分 复习思考题 一.单选题 ……………………………………………………………………………4 二.填空题 ……………………………………………………………………………24 三.计算题 ………………………
高等数学教材
df(x)dx 与 dx解 不相等.设F?(x)?f(x),则
例1 (E01) 问
????f?(x)dx是否相等?
d??f(x)dx??dx(F(x)?C)?F?(x)?0?f(x)
d而由不定积分定义?f?(x)dx?f(x)?C,所以??f(x)dx???f?(x)dx.
dxddx例3 (E03) 检验下列不定积分的正确性:
(1)xcosxdx?xsinx?C;(2)xcosxdx?xsinx?cosx?C; 解 (1)错误. 因为对等式的右端求导,其导函数不是被积函数:
???xsinx?C???xcosx?sinx?0?xcosx.
(2)正确. 因为
?xsinx?cosx?C???xcosx?sinx?sinx?0?xcosx.
1.填空题
(1)若f(x)的一个原函数为lnx2,则f(x)? 。 解:因为?f(x)dx?lnx2?c 所以f(x)?2x2? x2x(2)若?f(x)dx?sin2x?c,则f(x)? . 解:f(x)?2cos2x
(3)若?f(x)dx?xlnx?c,则f?(x)? . 解:f(x)?lnx?1,f?(x)?(4)d?e?xd
专升本 - 高等数学
2011年陕西省普通高等教育专升本招生考试考前冲刺密卷
高等数学
一、单项选择题(本大题共5小题,每小题5分,共25分)在每小题的四个选项中,只有一个是符合题目要求的
1.函数f(x,y)在点(x0,y0)处的偏导存在是函数f(x,y)在该点连续的( ). A.充分条件不是必要条件 B.必要条件但不是充分条件 C.充要条件 D.既不是充分条件,也不是必要条件
2.lim →
x0
?x02tanxdxx4=( ).
1
A.0 B. C.1 D.2
2
113.若函数f(x)满足f(x)=x+1-??1f(x)dx,则f(x)=( ).
2
1111
A.x- B.x- C.x+ D.x+ 3223
22
4.设区域D由y=x,x=y围成,则D的面积为( ).
121A. B. C.1 D.1 333
5.曲面x2+y2=1+2z2表示( ).
A.旋转单叶双曲面 B.旋转双叶双曲面 C.圆锥面 D.椭球面
二、填空题(本大题共5小题,每小题5分,共25分)
π
0,?上的最大值为________. 6.函数f(x)=x+2cosx在??2?
x2+ax-6
7.若lim =5,则a=________.
x→2x-2
π8.定积分
高等数学笔记
第1章 函数
§1 函数的概念 一、区间、邻域
自然数集 N 整数集 Z 有理数集 Q 实数集 R 建立数轴后:
建立某一实数集A与数轴上某一区间对应
区间:设有数 a,b,a
a称为 (a,b) 的左端点,b称为 (a,b) 的右端点。
a?(a,b),b?(a,b)
闭区间: [a,b]={x|a≤x≤b}
a∈[a,b],b∈[a,b]
文章来源:http://www.codelast.com/
半开区间: [a,b)={x|a≤x≤b},a∈[a,b),b?[a,b)
(a,b]={x|a a,b都是确定的实数,称 (a,b),[a,b),(a,b],[a,b] 为有限区间,“ b?a ”称为区间长度。 记号: +∞ ——正无穷大 ?∞ ——负无穷大 区间: [a,+∞)={x|a≤x} (a,+∞)={x|a 称为无穷区间(或无限区间) 文章来源:http://www.codelast.com/ 邻域:设有两个实数 a,δ(δ>0) ,则称实数集 {x|a?δ a 称为 N(a,δ) 的中心, δ>0 称为邻域 N(a,δ) 的半径。 去心邻域:把 N(a,δ) 的中心点 a 去掉,称为点 a 的去心邻域,记为 N(a
高等数学复习
第七章 常微分方程
1.常微分方程的基本概念
常微分方程的阶
线性微分方程和非线性微分方程
y(n)?a1(x)y(n?1)???an?1(x)y??an(x)y?g(x) n阶微分方程的特解和通解
一般地,微分方程的不含有任意常数的解称为微分方程的特解. 含有相互独立的任意常数,且任意常数的个数与微分方程的阶数相等的解称为微分方程的通解(一般解)
例 试指出下列方程是什么方程,并指出微分方程的阶数.
dy(1)?x2?y;dx3dy?dy?(2)x???2?4x;dx?dx?2d2y?dy?(3)x2?2???5xy?0;(4)cos(y??)?lny?x?1.dx?dx? 例 验证函数y?(x2?C)sinx(C为任意常数)是方程
dy?ycotx?2xsinx?0 dx的通解, 并求满足初始条件y|2.可分离变量的微分方程
可分离变量的微分方程
x??2?0的特解
dy?f(x)g(y) dx齐次方程
dy?y??f?? dx?x?dy?2xy的通解. dx例 求微分方程
例 求微分方程dx?xydy?y2dx?ydy的通解 例 求解微分方程
dyyy??tan满足初始条件dxxxyx?1??6的特解
3.一阶线性微分方程 形如
dy?
高等数学求导公式
I.基本函数的导数 01.?C???0;
02.?x?????x??1;
03.?sinx???cosx; 04.?cosx????sinx;
05.
?tanx???sec2x; 06.?cotx????csc2x;
07.?secx???secxtanx; 08.?cscx????cscxcotx;09.?ax???axlna; 10.?ex???ex;
11.?log1ax???xlna; 12.?lnx???1x;
13.
?arcsinx???11?x2;
14.?arccosx????11?x2;15.?arctanx???11?x2; 16.
?arccotx????11?x2。
II.和、差、积、商的导数 01.?u?v???u??v?; 02.?Cu???Cu?; 03.?uv???u?v?uv?; 04.??u??u?v?uv??v???v2(v?0)。
III复合函数的导数 若y?f?u?,u???x?,则
dydx?dydududx 或 y??x??f??u????x?。
? 计算极限时常用的等价无穷小
12limsinx?x limtanx?x lim?1?cosx??x
x?0x?0x