线性微分方程结构解特征

“线性微分方程结构解特征”相关的资料有哪些?“线性微分方程结构解特征”相关的范文有哪些?怎么写?下面是小编为您精心整理的“线性微分方程结构解特征”相关范文大全或资料大全,欢迎大家分享。

5-4-线性微分方程解的结构

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

习题5.4(P306)

1. 用观察法求下列方程的一个特解.

(1) (x+1)y′′ 2xy′+2y=0

解:由于方程中y及y′的系数有关系:p(x)+xq(x)=0,故y=x为上述方程的一个特解.

(2) xy′′ (1+x)y′+y=0

解:由于方程中y及其各阶导数的系数之和为零,故y=e为上述方程的一个特解.

2. 用常数变易法求方程y′′+y=tanx的通解.

解:方程所对应的齐次方程的特征方程为r+1=0,特征根为r1,2=±i, 故方程所对应的齐次方程的通解为y=C1cosx+C2sinx

设非齐次方程的特解为y0=C1(x)cosx+C2(x)sinx, 22x

′=C1′(x)cosx C1(x)sinx+C2′(x)sinx+C2(x)cosx 则y0

′(x)sinx=0′(x)cosx+C2令C1(1)

′= C1(x)sinx+C2(x)cosx 故y0

′′= C1′(x)sinx C1(x)cosx+C2′(x)cosx C2(x)sinx y0

′(x)sinx+C2′(x)cosx=tanx代入原方程得 C1(2)

sin2x′(x)= ′(x)=sinx, 联立(1)(2)解得C1,C2cosx

sin2x解得C1(x)=∫

5-4-线性微分方程解的结构

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

习题5.4(P306)

1. 用观察法求下列方程的一个特解.

(1) (x+1)y′′ 2xy′+2y=0

解:由于方程中y及y′的系数有关系:p(x)+xq(x)=0,故y=x为上述方程的一个特解.

(2) xy′′ (1+x)y′+y=0

解:由于方程中y及其各阶导数的系数之和为零,故y=e为上述方程的一个特解.

2. 用常数变易法求方程y′′+y=tanx的通解.

解:方程所对应的齐次方程的特征方程为r+1=0,特征根为r1,2=±i, 故方程所对应的齐次方程的通解为y=C1cosx+C2sinx

设非齐次方程的特解为y0=C1(x)cosx+C2(x)sinx, 22x

′=C1′(x)cosx C1(x)sinx+C2′(x)sinx+C2(x)cosx 则y0

′(x)sinx=0′(x)cosx+C2令C1(1)

′= C1(x)sinx+C2(x)cosx 故y0

′′= C1′(x)sinx C1(x)cosx+C2′(x)cosx C2(x)sinx y0

′(x)sinx+C2′(x)cosx=tanx代入原方程得 C1(2)

sin2x′(x)= ′(x)=sinx, 联立(1)(2)解得C1,C2cosx

sin2x解得C1(x)=∫

用拉氏变换法解线性微分方程

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

用拉氏变换法解线性微分方程

一 基本定义

若函数f(t),t为实变量,线积分

∫ f(t)e-st dt (s为复变量)存在,

0∞

则称其为f(t)的拉氏变换,记为F(s)或£[f(t)],即F(s)=£[f(t)]=∫ f(t)e-st dt

0

常称:F(s)→f(t)的象函数;

f(t) →F(s)的原函数。 二 基本思路

用拉氏变换解线性微分方程,可将经典数学中的微积分运算转化成代数运算

三 典型函数的拉氏变换 1、单位阶跃函数

f(t)=1(t)= 1 t≧0 0 t <0

F(s)=£[f(t)]= ∫ f(t)e-st dt =∫ 1 e-st dt =1/s

0∞

∞ 0

微分方程 拉氏变换 象函数 解代数方程 象原函数 (微分方程解) 拉氏反变换 象函数 代数方程 f(t) 1 0

t

2、单位斜坡函数 f(t)= t 1(t) = t t≥0

0 t<0

-st 2

F(s)=£[f(t)]= ∫0 t edt =1/s

f(t) t

3、等加速度函数

f(t) = 1/2 t2

微分方程数值解报告

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

2011-12-22

山东大学数学学院08级基地班 信息与计算科学专业 乔珂欣 学号 200800090114

微分方程数值解报告

目 录

一维变系数二点边值问题的中心差分数值解法 ....................................................... 3

1.中心差分格式的建立 ....................................................................................................................... 3 2.算例 ................................................................................................................................................... 5

二维常系数椭圆问题五点中心差分 ....................................................................

微分方程数值解报告

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

2011-12-22

山东大学数学学院08级基地班 信息与计算科学专业 乔珂欣 学号 200800090114

微分方程数值解报告

目 录

一维变系数二点边值问题的中心差分数值解法 ....................................................... 3

1.中心差分格式的建立 ....................................................................................................................... 3 2.算例 ................................................................................................................................................... 5

二维常系数椭圆问题五点中心差分 ....................................................................

线性常微分方程组

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

Review 常系数齐次线性ODE的特征解法x(n)n

+ a1 x

( n 1)

λ + a1λ特征根 重数

n 1

+ L + an 1 x′ + an x = 0

+ L + an 1λ + an = 0.线性无关解 λt

λ (实) λ (实)

1kλt αt

e

e ,te , , t Lαt αt αt

λt

k 1 λt

e

α ± iβ

1k

e cos β t , e sin β t e cos β t , te cos β t ,L , t e cos β t , eα t sin β t , teα t sin β t ,L , t k 1eα t sin β tk 1 α t

α ± iβ

常系数非齐次线性ODE的待定系数法

x ( n ) + a1 x ( n 1) + L + an 1 x′ + an x = f (t ) f (t ) special solution x(t )

q (t )t k eλt , q real polynomial, p (t )e , λ ∈ deg(q ) ≤ deg( p ), p real polynomial, k = multiplicity of λ as an

偏微分方程数值解

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

数学与计算科学学院

实 验 报 告

实验项目名称 用Eular方法求解一阶常微分方程数值解 所属课程名称 偏微分方程数值解 实 验 类 型 验证性 实 验 日 期 2015-3-26

班 级 信计12-2班 学 号 201253100215 姓 名 张洪清 成 绩

一、实验概述: 【实验目的】 学会使用显性Eular方法和隐形Eular方法 应用显性Eular方法和隐形Eular方法求解一般一阶常微分方程的近似数值解。 学会用MATLAB解决数学问题。 【实验原理】 1、Eular方法: 一阶线性微分方程初值问题 ?y'?f(x,y),a?x?b??y(

常微分方程数值解 - 图文

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

常微分方程数值解

一只小船度过宽为d的河流,目标是起点A正对着的另一岸B点,已知河水流速v1 与船在静水中的中的速度v2 之比为k

(1)建立描述小船航线的数学模型,求其解析解;

(2)设d = 100 m,v1 = 1 m/s,v2 = 2 m/s,用数值解法求渡河所需时间,任何时刻小船的位置及航行曲线,作图,并与解析解比较; (3)若流速v1 =0 ,0.5 ,1.5 ,2 m/s结果将如何;

解题过程

(1) 以B为原点,沿河岸向右为x轴正向,垂直河岸向下为y轴正向,建立 坐标系。设在t时刻,船在x方向上的位移是x(t),在Y方向上的位移是y(t)。

在t时刻,船在x方向上的速度是x'(t),在y方向上的速度是y'(t),将船的速度v和水度v1在x,y轴方向上分解,可得:

vx?v1?v2sin?及vy??v2cos?

又tan??x y故sin??xx?y22cos???v2yy?x22yx?y

22

则有vy?dy=dt以及vx? (2)

dx=v1?dtv2xy?x22

数值解:下面将用龙格-库塔方法对微分方程和微分方程组进行近似求解 function Xdot=fun(t,x,v1,v2) d=100;v1=1;v2=

常系数线性微分方程的解法

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

论文常系数线性微分方程的解法

常系数线性微分方程的解法

摘 要

本文主要介绍了常系数线性微分方程的解法。由于在讨论常系数线性微分方程的解法时,需要涉及实变量的复值函数及复值数函数问题,所以文章首先给予介绍。然后,本文又通过构造特征方程运用代数运算分情况给出常系数齐次线性微分方程的具体解法,并引出可以化为此方程形式的欧拉方程。有了前面讨论的结果,对于常系数非齐次线性微分方程可以采用常数变易法,这里没有具体介绍,而是介绍具有某些特殊形式的非齐次线性微分方程的解法,即比较系数法和拉普拉斯变换法。

关键词:复值函数与复指数函数,齐次线性微分方程,欧拉方程,非齐次线性微分方程,比较系数法,拉普拉斯变换法

The Methods of Solving Linear Differential Equation with Constant Coefficients

This paper describes the methods of solving linear differential equation with constant coefficients. First of all, the paper below will describe complex-va

试论常微分方程的奇解

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

试论常微分方程的奇解

摘要: 一阶微分方程拥有含有一个任意常数的通解,另外可能还有个别不含于通

解的特解,即奇解,利用P-判别法和C-判别法可以求出奇解,而这两种判别法是否适用于求每一个一阶微分方程的奇解?此文中举了几个例子来说明这个问题.并给出另外三种求奇解的方法.

关键词: 一阶微分方程,奇解,P-判别式,C-判别式,C-P消去法,拾遗法,自然法.

Discussing Singular Solution about First Order

Differential Equation

ZHU Yong-wang

(Class 1, Grade 2006, College of Mathematics and Information Science)

Advisor: Professor LI Jian-min

Abstract: First order differential equation has a general solution which contains an arbitrary constant, but sometimes it has special solution that is singular solution