图形的面积公式和周长公式
“图形的面积公式和周长公式”相关的资料有哪些?“图形的面积公式和周长公式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“图形的面积公式和周长公式”相关范文大全或资料大全,欢迎大家分享。
椭圆周长公式的推导、证明、检验、评价与应用
椭圆周长公式的推导、证明、检验、评价与应用
-----------三探椭圆周长的计算(终结篇)
四川省美姑县中学 周钰承
★ 关键词:椭圆周长,标准公式,近似计算,初等公式。
★ 内容提要:本文搜集了各种椭圆周长公式。无论是标准公式还是近似公式,
本文将对部分公式给予证明,或推导,或否定,或检验、评价与应用,希
望广大读者喜欢。
★ 目录:一、椭圆周长标准公式的推导与椭圆周长准确值的计算 二、两个高精度的椭圆周长初等公式 三、椭圆周长公式集锦与评价
一、椭圆周长的标准公式的推导与椭圆周长精确值的计算
宇宙间宏观物体的运动轨迹大都是椭圆,但其周长不能准确的计算出来。经过数学家的计算与证明,最终得出椭圆周长没有准确的初等公式,但可以用椭圆积分的级数形式表示。下面对椭圆周长的一个标准公式进行证明和计算。
在平面直角坐标系内,椭圆的标准方程是:
xa22?yb22?1,a?0,b?0.
参数方程是: x?acos?,y?bsin?,?0???2?? 函数图像为:
若某条光滑曲线,能用参数方程表示:
x?X?t?,y?Y?t?
??t??,该曲线长度可表示为:
L?22????????X't?Y'tdt
椭圆的焦点弦长公式
椭圆的焦点弦长公式
F1F2?2ab2222a?ccos?及其应用
在有关椭圆的综合题中,常常遇到椭圆焦点弦的问题,如何解决这类问题呢?首先我们有命题:
若椭圆的焦点弦F1F2所在直线的倾斜角为?,a、b、c分别表示椭圆的长半轴长、
2ab2222短半轴长和焦半距,则有F1F2?a?ccos?。
上面命题的证明很容易得出,在此笔者只谈谈该命题的应用。
例1、已知椭圆的长轴长AB?8,焦距F1F2?42,过椭圆的焦点F1作一直线交椭圆于P、Q两点,设?PF1X??(0????),当?取什么值时,PQ等于椭圆的短轴长?
分析:由题意可知PQ是椭圆的焦点弦,且a?4,c?22,从而b?22,故由焦
2ab2222点弦长公式F1F2?a?ccos?及题设可得:
2?4?(22)16?8cos?22?42,解得
cos???2?2,即??arccos2?2或??arccos2?2。
例2、在直角坐标系中,已知椭圆E的一个焦点为F(3,1),相应于F的准线为Y轴,
16?直线l通过点F,且倾斜角为,又直线l被椭圆E截得的线段的长度为,求椭圆E的
35方程。
分析:由题意可设椭圆E的方程为
(x?c?3)a22?(y?1)b22?1,又椭圆E相应于F的
椭圆的焦点弦长公式
椭圆的焦点弦长公式
F1F2?2ab2222a?ccos?及其应用
在有关椭圆的综合题中,常常遇到椭圆焦点弦的问题,如何解决这类问题呢?首先我们有命题:
若椭圆的焦点弦F1F2所在直线的倾斜角为?,a、b、c分别表示椭圆的长半轴长、
2ab2222短半轴长和焦半距,则有F1F2?a?ccos?。
上面命题的证明很容易得出,在此笔者只谈谈该命题的应用。
例1、已知椭圆的长轴长AB?8,焦距F1F2?42,过椭圆的焦点F1作一直线交椭圆于P、Q两点,设?PF1X??(0????),当?取什么值时,PQ等于椭圆的短轴长?
分析:由题意可知PQ是椭圆的焦点弦,且a?4,c?22,从而b?22,故由焦
2ab2222点弦长公式F1F2?a?ccos?及题设可得:
2?4?(22)16?8cos?22?42,解得
cos???2?2,即??arccos2?2或??arccos2?2。
例2、在直角坐标系中,已知椭圆E的一个焦点为F(3,1),相应于F的准线为Y轴,
16?直线l通过点F,且倾斜角为,又直线l被椭圆E截得的线段的长度为,求椭圆E的
35方程。
分析:由题意可设椭圆E的方程为
(x?c?3)a22?(y?1)b22?1,又椭圆E相应于F的
扇形与弧长公式
区一小的施工路段在施工过程中,要制造 如图所示的弯形管道,必须先按中心线计算 “展直长度”,再根据比例尺下料,你能计 算图中所示管道的展直长度吗?
(1)半径为R的圆,周长是多少?
C=2πR
.
R
(2)圆的周长可以看作是多少度的圆心角所对的弧 360°
1°圆心角所对弧长是多少?
1 R 2 R 360 180R 1°
90°圆心角所对的弧长是1°圆心角所对的弧长 的多少倍? 90 倍90°
R R 1°
90°圆心角所对弧长是多少?
90
R180
R2
n°圆心角所对的弧长是1°圆心角所对的弧长 的多少倍? n 倍
R
1°
R
n°
n°圆心角所对弧长是多少?
n R 180
若设⊙O半径为R, n°的圆心 角所对的弧长为l,则n R l 180
如图,圆心角为60°的扇形的半径为10cm, 求这个扇形的周长. 分析: 周长C OA OB l AB
B
解:周长 C OA OB l AB
10 10 3 20 3
O
A
制造弯形管道时,要先按中心线计算“展
各种图形体积与面积计算公式
各种图形计算公式表 名称 图形 计算公式 尺寸说明
长方形
V=abh S=2(abahbh S=2h(ab =√aabbhh
a、b、h---边长 O---底面对角线交点 V(体积、F(底面积、S(面积、S 侧表面积
三棱体
V=Fh S=(abch2F S=(abch
a、b、c---边长 h=高 F=底面积 O=底面中线交点
棱锥
V=Fh S=nfF S=nf
f---一个组合三角形的面积 n---组合三角形的个数 O---锥底各对角线交点 F---棱锥的底面积 h---棱锥的高
棱台
V=h(FF2√FF2 S=anFF2 S=an
F、F2---两平行底面的面积 h---底面间的距离 a---一个组合梯形的面积 n---组合梯形的个数
圆柱和 空心圆 柱
园柱V=πh S=2πh2π S=2πh 空心直园柱V=πh(=2πh S=2π(h2π( - S=2π(h;
---外半径 ---内半径 ---柱壁厚度 ---平均半径 Si---内外侧面积
各种图形计算公式表
斜截直 圆柱
h---最小高度 h
平面图形的周长和面积
仙居五小 陈武
什么是周长?封闭图形一周的长度
什么是面积?物体表面或封闭图形的大小
用字母表示出它们的周长和面积的计算公式bar
aC=(a+b)×2 S=ab h
aC = 4a S=a2 C = πd 或 2πr S=πr2
ah h
a S=ah÷2
bS=(a+b)h÷2
aS=ah
平面图形周长、面积 知识网络图aC= 4a2 a S=
b
aC = (a+b)×2
a S = ah
h
a S = ah÷2 b S = (a+b)h÷2 h a
h
S = ab
rC = 2πr S = πr2
1、判断题:
× 1、三角形的面积是平行四边形面积的一半。× 2、边长是4米的正方形的面积和周长相等。3、半圆的周长和面积是整个圆的周长和面积 的一半。 × 4、把一个平行四边形活动框架(四根木条钉成
的)拉成一个长方形,那么原来平行四边形与 现在长方形相比周长不变、面积变了 。 √
二、填空 1、一个平行四边形和一个三角形等底等高, 已知三角形的面积是20平方厘米,平行四边 形的面积是( 40 )平方厘米。 2、一个平行四边形和一个三角形等底等高, 已知平行四边形的面积是20平方厘米,三角
平面图形的周长和面积
仙居五小 陈武
什么是周长?封闭图形一周的长度
什么是面积?物体表面或封闭图形的大小
用字母表示出它们的周长和面积的计算公式bar
aC=(a+b)×2 S=ab h
aC = 4a S=a2 C = πd 或 2πr S=πr2
ah h
a S=ah÷2
bS=(a+b)h÷2
aS=ah
平面图形周长、面积 知识网络图aC= 4a2 a S=
b
aC = (a+b)×2
a S = ah
h
a S = ah÷2 b S = (a+b)h÷2 h a
h
S = ab
rC = 2πr S = πr2
1、判断题:
× 1、三角形的面积是平行四边形面积的一半。× 2、边长是4米的正方形的面积和周长相等。3、半圆的周长和面积是整个圆的周长和面积 的一半。 × 4、把一个平行四边形活动框架(四根木条钉成
的)拉成一个长方形,那么原来平行四边形与 现在长方形相比周长不变、面积变了 。 √
二、填空 1、一个平行四边形和一个三角形等底等高, 已知三角形的面积是20平方厘米,平行四边 形的面积是( 40 )平方厘米。 2、一个平行四边形和一个三角形等底等高, 已知平行四边形的面积是20平方厘米,三角
椭圆周长近似公式
年第刀‘刀
期
数学通报
梅,
,
刀‘刀
办,
,
‘
文
中」的推广是不同的那里相应于三维空间,,
办由此可以验证卫‘
式成立
但
‘
式不成‘
的情形是分别在四面体四个面或其延展面上的四个点共面的条件参考资料刘毅
此例表明本文推广定理的结论不能取的形式即梅耐劳斯定理和塞瓦定理的空间推广,
,
三维空间中塞瓦定理
数学通报
,
定理的结论形式是不尽相同的最后我们指出,
张晗方
定理的高维推广数学通报
,
梅耐劳斯定理的本文推广与
椭圆周长近似公式周祖遣首都师大数学系
设椭圆的长半轴为的理论知,
,
短半轴为
,
由定积分
由椭圆的两个半轴的各种平均值,
和
,
使我们想到它们
椭圆的周长一‘
为
如
关
万
‘丫一“
‘‘‘一“
,
‘
,
,
其中函数表示,
止二二,
训了灭丁丽二是椭圆的离心率
,
‘
,
,
、
、
、
这是第二
一
丽了
可嚓正好与半径为、饭石的圆面,
类椭圆积分
它的被积函数的原函数不能用初等
积分值必须利用近似积分法或展开成,
等等椭圆的面积
无穷级数来求出
也可以由查椭圆积分表得到、
利用级数公式二二、
积相等因而我们有理由相信以不等式中各数。为半径的圆周长丽句及币淤耳甲了武
骊的
都可作为椭圆周长的近似值
为了将这些值与公
一
恤
干二一
几
艺一一一一一蔽一一一一一一
…
丁’
一几‘
山
式
作精确比较
,
下面我们分别将它们按
正整次幂展成幂级数石训了二飞百了
一,
圆与组合图形的面积与周长.
小升初专项训练
平面图形面积————圆的面积
班级 姓名 上课时间
专题简析:在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要
找出图中的隐蔽条件与已知条件和要求的问题间的关系。并且同学们应该牢记几个常见的圆与正方形的关系量:在正3.142
方形里的最大圆的面积占所在正方形的面积的 ,而在圆内的最大正方形占所在圆的面积的 ,这些知识点都应
43.14该常记于心,并牢牢掌握!.
例题1。求图中阴影部分的面积(单位:厘米)。
【分析】如图所示的特点,阴影部分的面积可以拼成1/4圆的面积。 62×3.14×1/4=28.26(平方厘米)练习1求下面各个图形中阴影部分的面积(单位:厘米)。
例题2。
求图中阴影部分的面积(单位:厘米)。
.
小升初专项训练
【分析】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。从图中可以看出阴影部分的面积等于
大扇形的面积减去大三角形面积的一半。 3.14×42×1/4-4×4÷2÷2=8.56(平方厘米)
练习2:
初中数学图形的认识定理和公式汇总
初中数学图形的认识定理与公式
资料来源:初中数学
图形的认识
(1)角
角平分线的性质:角平分线上的点到角的两边距离相等,角的内部到两边距离相等的点在角平分线上。
(2)相交线与平行线
同角或等角的补角相等,同角或等角的余角相等;
对顶角的性质:对顶角相等 垂线的性质: ①过一点有且只有一条直线与已知直线垂直;
②直线外一点有与直线上各点连结的所有线段中,垂线段最短;
线段垂直平分线定义:过线段的中点并且垂直于线段的直线叫做线段的垂直平分线; 线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,到线段两端点的距离相等的点在线段的垂直平分线;
平行线的定义:在同一平面内不相交的两条直线叫做平行线;
平行线的判定:
①同位角相等,两直线平行;
②内错角相等,两直线平行;
③同旁内角互补,两直线平行;
平行线的特征:
①两直线平行,同位角相等;
②两直线平行,内错角相等;
③两直线平行,同旁内角互补;
平行公理:经过直线外一点有且只有一条直线平行于已知直线。
(3)三角形
三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边; 三角形的内角和定理:三角形的三个内角的和等于;
三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;
三角形的外角