初中数学二次函数公式及知识点整理
“初中数学二次函数公式及知识点整理”相关的资料有哪些?“初中数学二次函数公式及知识点整理”相关的范文有哪些?怎么写?下面是小编为您精心整理的“初中数学二次函数公式及知识点整理”相关范文大全或资料大全,欢迎大家分享。
初三数学二次函数知识点总结
砺智培训学校 1 / 11
一、二次函数概念:
b,c是常数,a?0)的函数,叫做二次函数。 1.二次函数的概念:一般地,形如y?ax2?bx?c(a,c可以为零.二次函数的定义域是全体 这里需要强调:和一元二次方程类似,二次项系数a?0,而b,实数.
2. 二次函数y?ax2?bx?c的结构特征:
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式
1. 二次函数基本形式:y?ax2的性质: a 的绝对值越大,抛物线的开口越小。
a的符号 a?0 开口方向 顶点坐标 对称轴 向上 性质 x?0时,y随x的增大而增大;x?0时,y随0? ?0,0? ?0,y轴 x的增大而减小;x?0时,y有最小值0. x?0时,y随x的增大而减小;x?0时,y随a?0 向下 y轴 x的增大而增大;x?0时,y有最大值0.
2. y?ax2?c的性质: 上加下减。
a的符号 a?0 开口方向 顶点坐标 对称轴 向上 性质 x?0时,y随x的增大而增大;x?0时,y随c? ?0,c? ?0,y轴 x的增大而减小;x?0时,y有最小值c. x?0时,y随x
初三数学二次函数知识点总结
砺智培训学校 1 / 11
一、二次函数概念:
b,c是常数,a?0)的函数,叫做二次函数。 1.二次函数的概念:一般地,形如y?ax2?bx?c(a,c可以为零.二次函数的定义域是全体 这里需要强调:和一元二次方程类似,二次项系数a?0,而b,实数.
2. 二次函数y?ax2?bx?c的结构特征:
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式
1. 二次函数基本形式:y?ax2的性质: a 的绝对值越大,抛物线的开口越小。
a的符号 a?0 开口方向 顶点坐标 对称轴 向上 性质 x?0时,y随x的增大而增大;x?0时,y随0? ?0,0? ?0,y轴 x的增大而减小;x?0时,y有最小值0. x?0时,y随x的增大而减小;x?0时,y随a?0 向下 y轴 x的增大而增大;x?0时,y有最大值0.
2. y?ax2?c的性质: 上加下减。
a的符号 a?0 开口方向 顶点坐标 对称轴 向上 性质 x?0时,y随x的增大而增大;x?0时,y随c? ?0,c? ?0,y轴 x的增大而减小;x?0时,y有最小值c. x?0时,y随x
初中数学二次函数复习专题(1)
试题宝典 http://www.shitibaodian.com 试题、教案、课件、论文,免费提供!
初中数学二次函数复习专题
〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向 〖大纲要求〗
1.理解二次函数的概念;
2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,
会用描点法画二次函数的图象; 3.会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了
解特殊与一般相互联系和转化的思想; 4.会用待定系数法求二次函数的解析式;
5.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的
交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之
间的联系。
内容
(1)二次函数及其图象
如果y=ax+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。 二次函数的图象是抛物线,可用描点法画出二次函数的图象。 (2)抛物线的顶点、对称轴和开口方向 抛物线y=ax+bx+c(a≠0)的顶点是(?22
b2a,4ac?b4a2对称轴是x??),
b2a,当a>0时,
抛物线开口向上,当a<0时,抛物线开口向下。
抛物线y=a(x+h)2+k(a≠0)的顶点是(-h,k),对称轴是
初中数学二次函数专题复习教案
初中数学二次函数专题复习
初中数学二次函数复习专题
〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向 〖大纲要求〗
1. 理解二次函数的概念;
2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会
用描点法画二次函数的图象;
3. 会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般相互联系和转化的思想;
4. 会用待定系数法求二次函数的解析式;
5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点
坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。
内容
(1)二次函数及其图象
如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。 二次函数的图象是抛物线,可用描点法画出二次函数的图象。 (2)抛物线的顶点、对称轴和开口方向 抛物线y=ax+bx+c(a≠0)的顶点是(
2
b2a
,
4ac b4a
2
),对称轴是x
b2a
,当a>0时,
抛物线开口向上,当a<0时,抛物线开口向下。 抛物线y=a(x+h)2+k(a≠0)的顶点是(-h,k),对称轴是x=-h. 〖考查重点与常见题型〗
1. 考查二次函数的
初中二次函数知识点及经典题型
二次函数的解析式
二次函数的解析式有三种形式:
(1)一般 一般式:y?ax2?bx?c(a,b,c是常数,a?0)
(2)两根 当抛物线y?ax2?bx?c与x轴有交点时,即对应二次好方程
ax2?bx?c?0有实根x1和x2存在时,根据二次三项式的分解因式ax2?bx?c?a(x?x1)(x?x2),二次函数y?ax2?bx?c可转化为两根式
y?a(x?x1)(x?x2)。如果没有交点,则不能这样表示。
a 的绝对值越大,抛物线的开口越小。
(3) 顶点式:y?a(x?h)2?k(a,h,k是常数,a?0)
知识点八、二次函数的最值
如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小
4ac?b2b值),即当x??时,y最值?。
4a2a如果自变量的取值范围是x1?x?x2,那么,首先要看?围x1?x?x2内,若在此范围内,则当x=?b时,y最值2ab是否在自变量取值范2a4ac?b2?;若不在此范围
4a内,则需要考虑函数在x1?x?x2范围内的增减性,如果在此范围内,y随x的增大而
22增大,则当x?x2时,y最大?ax2?bx2?c,当x?x1时,y最小?ax1?bx1?c;如2果在此范围内,y
初中数学知识点+数学公式总结及中考最后压轴题(二次函数、几何图
初中数学知识点+数学公式总结及中考最后压轴题
一、猜想、探究题 1. 已知:抛物线
y?ax2?bx?c与x轴交于A、B两点,与y轴交于点C. 其中点A在x轴的负半轴上,点C在y轴的负半轴上,线段OA、OC的
2x?5x?4?0的两个根,且抛物线的对称轴是直线x长(OA (1)求A、B、C三点的坐标; (2)求此抛物线的解析式; (3)若点D是线段AB上的一个动点(与点A、B不重合),过点D作DE∥BC交AC于点E,连结CD,设BD的长为m,△CDE的面积 为S,求S与m的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由. y A O D B x 12?1?作平行于x轴的直线l,抛物线y?xE 2. 已知,如图1,过点E?0,上的两点A、B的横坐标分别为?1和4,直线AB交y轴 4于点 F ,过点 A、B分别作直线l的垂线,垂足分别为点C、D,连接CF、DFC . (1)求点 A、B、F的坐标; (2)求证: CF?DF; 作 12x对称轴右侧图象上的一动点,过点P(3)点P是抛物线y?4△CDF相似?若存在,请求出所有符合条件的点P 3. 已知矩形纸片OABC立平面直角坐标系;点得到△PEC,再在
初中数学知识点+数学公式总结及中考最后压轴题(二次函数、几何图
初中数学知识点+数学公式总结及中考最后压轴题
一、猜想、探究题 1. 已知:抛物线
y?ax2?bx?c与x轴交于A、B两点,与y轴交于点C. 其中点A在x轴的负半轴上,点C在y轴的负半轴上,线段OA、OC的
2x?5x?4?0的两个根,且抛物线的对称轴是直线x长(OA (1)求A、B、C三点的坐标; (2)求此抛物线的解析式; (3)若点D是线段AB上的一个动点(与点A、B不重合),过点D作DE∥BC交AC于点E,连结CD,设BD的长为m,△CDE的面积 为S,求S与m的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由. y A O D B x 12?1?作平行于x轴的直线l,抛物线y?xE 2. 已知,如图1,过点E?0,上的两点A、B的横坐标分别为?1和4,直线AB交y轴 4于点 F ,过点 A、B分别作直线l的垂线,垂足分别为点C、D,连接CF、DFC . (1)求点 A、B、F的坐标; (2)求证: CF?DF; 作 12x对称轴右侧图象上的一动点,过点P(3)点P是抛物线y?4△CDF相似?若存在,请求出所有符合条件的点P 3. 已知矩形纸片OABC立平面直角坐标系;点得到△PEC,再在
初中数学知识点+数学公式总结及中考最后压轴题(二次函数、几何图
初中数学知识点+数学公式总结及中考最后压轴题
一、猜想、探究题 1. 已知:抛物线
y?ax2?bx?c与x轴交于A、B两点,与y轴交于点C. 其中点A在x轴的负半轴上,点C在y轴的负半轴上,线段OA、OC的
2x?5x?4?0的两个根,且抛物线的对称轴是直线x长(OA (1)求A、B、C三点的坐标; (2)求此抛物线的解析式; (3)若点D是线段AB上的一个动点(与点A、B不重合),过点D作DE∥BC交AC于点E,连结CD,设BD的长为m,△CDE的面积 为S,求S与m的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由. y A O D B x 12?1?作平行于x轴的直线l,抛物线y?xE 2. 已知,如图1,过点E?0,上的两点A、B的横坐标分别为?1和4,直线AB交y轴 4于点 F ,过点 A、B分别作直线l的垂线,垂足分别为点C、D,连接CF、DFC . (1)求点 A、B、F的坐标; (2)求证: CF?DF; 作 12x对称轴右侧图象上的一动点,过点P(3)点P是抛物线y?4△CDF相似?若存在,请求出所有符合条件的点P 3. 已知矩形纸片OABC立平面直角坐标系;点得到△PEC,再在
二次函数知识点
二次函数知识点
一、二次函数概念:
b,c是常数,a?0)的函数,叫做二次函数。 这里需要强调:和一1.二次函数的概念:一般地,形如y?ax?bx?c(a,c可以为零.二次函数的定义域是全体实数. 元二次方程类似,二次项系数a?0,而b,2. 二次函数y?ax?bx?c的结构特征:
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
22b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式
1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。
2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质
0? ?0,0? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最小值0. a?0 向下 y轴 x?0时,y随x的增大而减小;x?0时,y随x的增大而增大;x?0时,y有最大值0. 2. y?ax?c的性质: 上加下减。
2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质
c? ?0,c? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最
二次函数知识点
二次函数知识点
一、二次函数概念:
b,c是常数,a?0)的函数,叫做二次函数。 这里需要强调:和一1.二次函数的概念:一般地,形如y?ax?bx?c(a,c可以为零.二次函数的定义域是全体实数. 元二次方程类似,二次项系数a?0,而b,2. 二次函数y?ax?bx?c的结构特征:
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
22b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式
1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。
2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质
0? ?0,0? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最小值0. a?0 向下 y轴 x?0时,y随x的增大而减小;x?0时,y随x的增大而增大;x?0时,y有最大值0. 2. y?ax?c的性质: 上加下减。
2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质
c? ?0,c? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最