高等数学上册电子版
“高等数学上册电子版”相关的资料有哪些?“高等数学上册电子版”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高等数学上册电子版”相关范文大全或资料大全,欢迎大家分享。
高等数学电子版
第一章极限与连续
第一节 数列的极限 一、数列极限的概念
按照某一法则,对于每一个n?N?,对应一个确定的实数xn,将这些实数按下标n从小到大排列,得到一个序列
x1,x2,?,xn,?
称为数列,简记为数列{xn},xn称为数列的一般项。例如:
1212,231412,341843,?,nn?11265n,?
2,4,8,?,2n,?
,,,?,,?
n?1 1,?1,1,?,(?1) 2,一般项分别为
,,34,n,? n?(?1)nn?1n?1,?,,?
nn?1,2,
12n,(?1),
n?(?1)nn?1
数列{xn}可看成自变量取正整数n的函数,即xn?f(n),n?N? 设数列xn?n?(?1)n?111为使|xn?1|?,只需要n?100,即从101项以后各项都满足?1??nn1001, |xn?1|?100n?1n?(?1)11为使|xn?1|?,只需要n?100000,即从100001项以后各项都满足?1??nn1000001, |xn?1|?100000n?1n?(?1)111为使|xn?1|?,只需要n?,即当n?以后,?1??
高等数学上册导学案8397449
高等数学(上)期末复习指导 09年12月
高等数学上册导学案 目 录
第一部分 常考题型与相关知识提要 1 第二部分 理工大学01—08级高等数学(上)期末试题集(8套题) 18 01—08级高等数学(上)期末试题试题参考解答 26
第三部分 高等数学(上)期末模拟练习题(5套题) 39
模拟试题参考解答 46
第四部分 09级高等数学(上)考前最后冲刺题(1套题) 57
第一部分 常考题型与相关知识提要
题型一 求极限的题型 相关知识点提要 须熟记下列极限: (1)基本的极限:
?0, q?1? 1)limqn??, 2)limna?1,(a?0),limnn?1 1, q?1n??n??n???发散, q?1,q??1??0,n?m?anxn?
96-09高等数学上册历年考题清单
历年考题清单
说明:在2007级以前,微分方程的知识在下册,空间解析几何与向量代数部分的知识在上册;2007-2009级以后微分方程的知识在上册,空间解析几何与向量代数部分的知识在下册;2010微分方程的知识在下册,空间解析几何与向量代数部分的知识在上册。我把试卷中微分方程的内容去掉。同时在后面加了98-06空间解析几何与向量代数部分的内容。请同学们务必先自己做。
1996级《高等数学(上)》试卷
一、试解下列各题(24分)
1. 当x?0时,1?tgx?1?sinx与x是否是等价无穷小? 并说明理由 2. 求lim(lnx)x?e11?lnx 3. 求?(sinx?sinx)dx 4. 计算?2?sinxdx
?25 ?二.试解下列各题(14分)
1. 求 ?(1?sin3?)d? 2. 求? 0 5 ? ln2 0ex(1?ex)3dx
sin2xdx(11分) 三、计算?(2?x?sinx) dx(11分)四、求?2 11?sinx五、设f(x)?limx2?x?e2txt???,讨论f(x)的可导性,并在可导点处
求f ?(x)(10分)
六、设f(x)在(??, ??)可导,且f(x)
2016尔雅高等数学上答案
高等数学上
1.1 高等数学学习谈 1
微积分是高等数学的重要组成,其理论是由()和莱布尼兹完成的。 我的答案: 第一空: 牛顿 2
高等数学也称为微积分,它是几门课程的总称,具有高度的( )、严密的( )以及和广泛的( )。 我的答案: 第一空: 抽象性 第二空: 逻辑性 第三空: 应用性
1.2 微积分的基本思想和方法
1.2.1 经典问题——变速直线运动的瞬时速度问题 1
一物体做变速直线运动,它的位置函数是s=t2,t=2时该物体的瞬时速度为( )。
我的答案: 第一空: 4 2
一物体做变速直线运动,它的位置函数是s=2t^2-1,t=2时该物体的瞬时速度为( )。 我的答案: 第一空: 8
2 1.2.2 经典问题——变速直线运动的位移问题 1
物体在一条直线上运动,如果在相等的时间里位移( ),这种运动就叫做变速直线运动。简而言之,物体( )的直线运动称为变速直线运动。 正确答案: 第一空: 不等 第二空: 运动速度改变 2
一物体做变速直线运动,它的速度函数是v=2t,在[1,2]时间段内该物体的位移为( )。 正确答案: 第一空: 3
1.2.3 微积分的基本思想及构成 1
微积分是研究函数的( )、( )以及
高等数学上册课后答案(同济大学第六版)
高数上册答案
高等数学第六版上册课后习题答案
第一章:
习题1 1
1 设A ( 5) (5 ) B [ 10 3) 写出A B A B A\B及A\(A\B)的表达式
解 A B ( 3) (5 )
A B [ 10 5)
A\B ( 10) (5 ) A\(A\B) [ 10 5)
2 设A、B是任意两个集合 证明对偶律 (A B)C AC BC 证明 因为
x (A B)C x A B x A或x B x AC或x BC x AC BC 所以 (A B)C AC BC
3 设映射f X Y A X B X 证明 (1)f(A B) f(A) f(B)
(2)f(A B) f(A) f(B) 证明 因为
y f(A B) x A B 使f(x) y
(因为x A或x B) y f(A)或y f(B)
y f(A) f(B) 所以 f(A B) f(A) f(B) (2)因为
y f(A B) x A B 使f(x) y (因为x A且x B) y f(A)且y f
同济大学第六版高等数学上册课后答案全集
高等数学第六版上册课后习题答案
第一章
习题1-1
1. 设A =(-∞, -5)?(5, +∞), B =[-10, 3), 写出A ?B , A ?B , A \B 及A \(A \B )的表达式.
解 A ?B =(-∞, 3)?(5, +∞),
A ?
B =[-10, -5),
A \
B =(-∞, -10)?(5, +∞),
A \(A \
B )=[-10, -5).
2. 设A 、B 是任意两个集合, 证明对偶律: (A ?B )C =A C ?B C .
证明 因为
x ∈(A ?B )C ?x ?A ?B ? x ?A 或x ?B ? x ∈A C 或x ∈B C ? x ∈A C ?B C , 所以 (A ?B )C =A C ?B C .
3. 设映射f : X →Y , A ?X , B ?X . 证明
(1)f (A ?B )=f (A )?f (B );
(2)f (A ?B )?f (A )?f (B ).
证明 因为
y ∈f (A ?B )??x ∈A ?B , 使f (x )=y
?(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )
? y ∈f (A )?f (B ),
所以 f (A ?B )=
高等数学教材word版
目 录
一、函数与极限 ······················································································
电子版甘肃省普通高等学校招生工作问答电子版
3 , . s , , ,
甘肃省普通高等学校招生工作问答电子版
1
目 录
一、普通高考报名工作问答
高考报名须符合哪些条件 哪些人员不能参加高考报名 高考报名的地点和时间是怎样安排的 高考报名时需要提供哪些证件和材料 高考报名需要填写哪些表格 高考报名时需要注意的问题 为什么要认真核对《甘肃省普通高校招生考生报名登记表》 考生填写《甘肃省普通高校招生考生报名登记表》各项栏目内
容说明及注意的问题(3)
填写《甘肃省普通高校招生考
高等数学教材word版
目 录
一、函数与极限 ······················································································
(同济六版)_高等数学电子教案(高教社)2222
第一章 函数与极限分析基础
函数 — 研究对象 极限 — 研究方法 连续 — 研究桥梁
目录
上页
下页
返回
结束
第一章
第一节 映射与函数一、集合 二、映射 三、函数
目录
上页
下页
返回
结束
一、 集合1. 定义及表示法简称集
定义 1. 具有某种特定性质的事物的总体称为集合.组成集合的事物称为元素. 不含任何元素的集合称为空集 , 记作 元素 a 属于集合 M , 记作 a M . 元素 a 不属于集合 M , 记作 a M ( 或 a M ) . 注: M 为数集*表示 M 中排除 0 的集 ; M
简称元
.
M 表示 M 中排除 0 与负数的集 .目录 上页 下页 返回 结束
表示法: (1) 列举法:按某种方式列出集合中的全体元素 . 例: 有限集合 A a1 , a2 , , an
自然数集
ai N 0 , 1 , 2 , , n , n
n i 1
(2) 描述法: M x x 所具有的特征
例: 整数集合 Z x x N 或 x N p 有理数集 Q p Z , q N , p 与 q 互质 q 实数集合 R