不定方程的基本解法

“不定方程的基本解法”相关的资料有哪些?“不定方程的基本解法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“不定方程的基本解法”相关范文大全或资料大全,欢迎大家分享。

不定方程

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

六年级奥数 不定方程

【知识要点】

如果一个方程(组)的未知数的个数多于方程的个数,那么这个方程(组)就叫做不定方程(组)。 不定方程是数论中最古老的一个分支,它的研究在我国已延续了数千年,至今仍是令人感兴趣的课题。 不定方程的内容非常丰富,但在小学数学竞赛中,我们主要讨论二元一次不定方程,形如ax±by=c(a、b、c为已知的整数)的方程,我们称为二元一次不定方程,又称丢番图方程,以纪念生于公元三世纪的希腊数学家丢番图,他写了一本关于这类方程的书。

一个不定方程一般总有无穷多组解,但小学阶段主要涉及整系数不定方程的整数解。不定方程通常利用不等式及整除性来求解。 例1.

求3x+4y=23的自然数解。

练习一

1、 求3x+2y=25的自然数解。

2、 求4x+5y=37的自然数解。

3、 求5x-3y=16的最小自然数解。

例2

求下列方程组的正整数解。

5x+7y+3z=25 3x-y-6z=2

练习2

求下面方程组的自然数解。

1、 4x+3y-2z=7 2、 7x+9y+11z=68

3x+2y+4z=21 5x+7y+9z=52

2014内蒙省考行测不定方程有多种解法可选

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

给人改变未来的力量

2014内蒙省考行测:不定方程有多种解法可选

2014内蒙公务员考试已经拉开帷幕,大家都已经进入到紧张的复习当中,其中大家一会要注意到常见考点:不定方程,下面中公教育专家为大家详细介绍不定方程常用的四种解题方法,以便大家在以后遇到的时候能够得心应手。

一、奇偶性:当未知数的系数有2的倍数或者题目中有质数限定的时候采用此方法,是解不定方程中采用最多的方法。

例如:不定方程5X+4Y=59,59是一个奇数,4Y一定是个偶数,那么,5X就一定是个奇数,那么X取值只能取奇数,如1、3、5、、、、等等。

例1:某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁

舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人? A.36 B.37 C.39 D.41

【中公解析】D。此题初看无处入手,条件仅仅有每位教师所带学生数量为质数,条件较少,无法直接利用数量关系来推断,需利用方程法。

设每位钢琴教师带

二元一次不定方程的解法总结与例题 - 图文

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

探究二元一次不定方程

(Inquires into the dual indefinite equation)

冯晓梁(XiaoLiang Feng) (江西科技师范学院 数计学院 数一班 330031)

【摘 要】:二元一次不定方程是最简单的不定方程, 一些复杂的不定方程常常化为二元一次

不定方程问题加以解决。我们讨论二元一次方程的整数解。

The dual indefinite equation is the simple the indefinite equation, some complex indefinite equations change into the dual indefinite equation question to solve frequently. We discuss the dual linear equation the integer solution.

【关键字】:二元一次不定方程 初等数论 整数解

(Dual indefinite equation Primary theory of numbers Integer solution)

二元一次方程的概念:含有两个未知

不定方程和解不定方程应用题经典

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

1

不定方程

———研究其解法

方程,这个词对于同学们来说,再熟悉不过了,它在数学中占了很大的一个板块,许多题目都可以通过方程来得到答案,那么自然而然,它的解法就尤为重要了。 然而,我今天想为大家介绍的是一种特殊的方程——不定方程,因为它往往有多个或无数个解,他的解法相对较多较难,以下就是关于不定方程的一些问题。

一、不定方程是指未知数的个数多于方程个数的方程,其特点是往往有不唯一的解。 二、不定方程的解法 1、筛选试验法

根据方程特点,确定满足方程整数的取值范围,对此范围内的整数一一加以试验,筛去不合理的值。

如:方程x﹢y﹢z = 100共有几组正整数解?

解:当x = 1时y﹢z = 99,这时共有98个解:(y,z)为(1,98) (2,97)??(98,1)。 当x = 2时y﹢z = 98,这时共有97个解:(y,z)为(1,97) (2,96)??(97,1)。 ??

当 x = 98时,y﹢z = 2,这时有一个解。

∵ 98﹢97﹢96﹢??﹢1=

98?99= 4851 2∴ 方程x﹢y﹢z = 100共有4851个正整数解。

2、表格记数法

如:方程式4x﹢7 y =55共有哪些正

不定方程和解不定方程应用题经典

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

1

不定方程

———研究其解法

方程,这个词对于同学们来说,再熟悉不过了,它在数学中占了很大的一个板块,许多题目都可以通过方程来得到答案,那么自然而然,它的解法就尤为重要了。 然而,我今天想为大家介绍的是一种特殊的方程——不定方程,因为它往往有多个或无数个解,他的解法相对较多较难,以下就是关于不定方程的一些问题。

一、不定方程是指未知数的个数多于方程个数的方程,其特点是往往有不唯一的解。 二、不定方程的解法 1、筛选试验法

根据方程特点,确定满足方程整数的取值范围,对此范围内的整数一一加以试验,筛去不合理的值。

如:方程x﹢y﹢z = 100共有几组正整数解?

解:当x = 1时y﹢z = 99,这时共有98个解:(y,z)为(1,98) (2,97)??(98,1)。 当x = 2时y﹢z = 98,这时共有97个解:(y,z)为(1,97) (2,96)??(97,1)。 ??

当 x = 98时,y﹢z = 2,这时有一个解。

∵ 98﹢97﹢96﹢??﹢1=

98?99= 4851 2∴ 方程x﹢y﹢z = 100共有4851个正整数解。

2、表格记数法

如:方程式4x﹢7 y =55共有哪些正

不定积分的例题分析及解法

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

不定积分的例题分析及解法

这一章的基本概念是原函数、不定积分、主要的积分法是利用基本积分公式,换元积分法和分部积分法。对于第一换元积分法,要求熟练掌握凑微分法和设中间变量u??(x),而第二换元积分法重点要求掌握三角函数代换,分部积分法是通过“部分地”凑微分将?ud?转化成??du,这种转化应是朝有利于求积分的方向转化。对于不同的被积函数类型应该有针对性地、灵活地采用有效的积分方法,例如f(x)为有理函数时,通过多项式除法分解成最简分式来积分,f(x)为无理函数时,常可用换元积分法。 应该指出的是:积分运算比起微分运算来,不仅技巧性更强,而且业已证明,有许多初等函数是“积不出来”的,就是说这些函数的原函数不能用初等函数来表示,例如

?sinxxdx;?e?x2dx;?1lnxdx;?dx1?ksinx22(其中0?k?1)等。

这一方面体现了积分运算的困难,另一方面也推动了微积分本身的发展,在第7章我们将看到这类积分的无限形式的表示。

一、疑难分析

(一)关于原函数与不定积分概念的几点说明

(1)原函数与不定积分是两个不同的概念,它们之间有着密切的联系。对于定义在某区间上的函数

f(x),若存在函数F(x),使得该区间上每一点x处都有F?(x)

不定方程选讲

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

不定方程选讲

一、一次不定方程(组)

1.求不定方程x+y+z=2007正整数解的个数。 2.求不定方程2x+3y+5z=15的正整数解。 3.解不定方程11x+15y=7。 4.解不定方程50x+45y+36z=10。

?5x+7y+2z=24,

5.解不定方程组?

?3x-y-4z=4.

6.解不定方程6x+15y+21z+9w=30。

7.求有多少个正整数对(m,n),使得7m+3n=102004,且m︱n。(04年日本数学奥林匹克) 二、二次不定方程及其常用解法

8.求满足方程2x2+5y2=11(xy-11)的正整数数组(x,y)。 9.解不定方程14x2-24xy+21y2+4x-12y-18=0。 10.解不定方程3x2+5y2=345。

11.解不定方程x2-5xy+6y2-3x +5y-11=0。 12.求方程xy-2x+y=4的整数解。

35

13求能使等式 + =1成立的所有正整数m,n。

mn14.求方程2xy-2x2+3x-5y+11=0的整数解。 15.求方程3xy+y2-6x-2y=2的整数解。 16.求方程x2+y= x2y-1000的正整数解。 17.求所有的整数对(x,y),使得x3 = y3+2y2 +1。

不定方程选讲

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

不定方程选讲

一、一次不定方程(组)

1.求不定方程x+y+z=2007正整数解的个数。 2.求不定方程2x+3y+5z=15的正整数解。 3.解不定方程11x+15y=7。 4.解不定方程50x+45y+36z=10。

?5x+7y+2z=24,

5.解不定方程组?

?3x-y-4z=4.

6.解不定方程6x+15y+21z+9w=30。

7.求有多少个正整数对(m,n),使得7m+3n=102004,且m︱n。(04年日本数学奥林匹克) 二、二次不定方程及其常用解法

8.求满足方程2x2+5y2=11(xy-11)的正整数数组(x,y)。 9.解不定方程14x2-24xy+21y2+4x-12y-18=0。 10.解不定方程3x2+5y2=345。

11.解不定方程x2-5xy+6y2-3x +5y-11=0。 12.求方程xy-2x+y=4的整数解。

35

13求能使等式 + =1成立的所有正整数m,n。

mn14.求方程2xy-2x2+3x-5y+11=0的整数解。 15.求方程3xy+y2-6x-2y=2的整数解。 16.求方程x2+y= x2y-1000的正整数解。 17.求所有的整数对(x,y),使得x3 = y3+2y2 +1。

初一奥赛培训17:二元一次不定方程的解法(1)

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

初一奥赛培训17:二元一次不定方程的解法

一、解答题(共15小题,满分150分)

1、小张带了5角钱去买橡皮和铅笔,橡皮每块3分,铅笔每支1角1分,问5角钱刚好买几块橡皮和几支铅笔? 2、求不定方程x﹣y=2的正整数解.

3、求证:如果a,b是互质的正整数,c是整数,且方程ax+by=c ①,有一组整数解x0,y0,则此方程的一切整数解可以表示为

,其中t=0,±1,±2,±3,….

4、求11x+15y=7的整数解.

5、求方程6x+22y=90的非负整数解. 6、求方程7x+19y=213的所有正整数解. 7、求方程37x+107y=25的整数解.

8、某国硬币有5分和7分两种,问用这两种硬币支付142分货款,有多少种不同的方法? 9、求方程9x+24y﹣5z=1000的整数解.

10、今有公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只.用100个钱买100只鸡,问公鸡、母鸡、小鸡各买了多少只?

11、求下列不定方程的整数解: (1)72x+157y=1; (2)9x+21y=144; (3)103x﹣91y=5.

12、求下列不定方程的正整数解: (1)3x﹣5y=19; (2)12x+5y=125.

13、求下列不定方程的整数解: (1

浅谈不定积分的几种简单解法.doc

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

浅谈不定积分的几种简单解法

摘要 计算不定积分是微分课程的基本技能之一,本文就不定

积分方法和技巧,先介绍了它的三种基本计算方法,然后就几类典型的不定积分进行说明,并且介绍了几种特殊的积分方法和几类可积函数,最后针对一般类型的题总结出积分的策略,对求解不定积分有了进一步提高和认识。

关键词 积分概念;积分方法:第一类直接积分、第二

类换元积分、第三分部积分、以及特殊函数的积分;

不定积分是考试中常考内容之一,是学习以后知识和其他课程的基础,牢固

掌握不定积分非常重要。 怎样计算不定积分是高等数学教学的难点和重点.不定积分的求解方法技巧性很强,灵活性也比较大,而且对于同一个不定积分可能有多种不同的求解方法.为了开拓学生的思路,培养学生灵活的思维能力,使学生能够更好的理解和使用多种积分方法,达到举一反三、触类旁通的教学效果,在初步掌握不定积分的基本积分方法后,我们不能局限于一题一解,要试图一题多解。为了正确使用各种积分方法求解不定积分,我们必须掌握它的概念和性质以及积分的基本公式,才能够在以后的解题中做题自如,进行同类迁移。

1 不定积分概念与基本公式

1.1 原函数与不定积分

在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数