高中物理动力学三大解题方法
“高中物理动力学三大解题方法”相关的资料有哪些?“高中物理动力学三大解题方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中物理动力学三大解题方法”相关范文大全或资料大全,欢迎大家分享。
高中物理八大解题方法之一:隔离法和整体法
高中物理解题方法之隔离法和整体法
江苏省特级教师 戴儒京
隔离法和整体法是解决物理问题特别是力学问题的基本而又重要的方法。
隔离法是把一个物体从物体系中隔离出来,只研究他的受力情况和运动情况,不研究他的施力情况。
整体法是把物体系看做一个整体,分析物体系的受力情况和运动情况,而不分析物体系内的物体的相互作用力。
整体法一般是在物体系内各物体的加速度相同的情况下应用。并且不求物体系内各物体的相互作用力。
下面的例题中的物体系只包含2个物体,3个以上的物体,方法与此类似。 一、一个外力
例1.光滑水平面上的两个物体
在光滑水平面上有两个彼此接触的物体A和B,它们的质量分别为m1、m2。若用水平推力F作用于A物体,使A、B一起向前运动,如图1所示,则两物体间的相互作用力为多大?若将F作用于B物体,则A、B间的相互作用力为多大?
F 【解析】对A、B两个物体组成的系统用整体法,根A B 据牛顿第二定律,有
图1
F?(m1?m2)a,所以a?F ①
m1?m2对B物体用隔离法,根据牛顿第二定律,有
FAB?m2a ②
将①代入②得 FAB?F?m2 ③
m1?m2若将F作用于B物体,则对A物体用隔离法,根据牛顿第二定律,有
FBA?m1a
高中物理解题方法模板
高中物理解题方法
物理题解常用的两种方法:
分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。这样一种思维方式“目标明确”,是一种很好的方 法应当熟练掌握。
综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。
综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。
实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。
正确解答物理题应遵循一定的步骤
第一步:看懂题。所谓看懂题是指该题中所叙述的现象是否明白?不可能都不明白,不懂之处是哪?哪个关键之处不懂?这就要集中思考“难点”,注意挖掘“隐含条件。”要养成这样一个习惯:不懂题,就不要动手解题。
若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。
第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。
第三步:对习题的答案进行讨论.讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。
高中物理专题讲解 - 在动力学中临界极值问题的处理
在动力学中临界极值问题的处理
物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、电磁学密切相关,综合性强。在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。
一.解决动力学中临界极值问题的基本思路
所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。
解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、
1临界点是一个特殊的转换状态,牛顿运动定律中都涉及到临界和极值问题。在解决临办极值问题注意以下几点:○是物理过2临界点的两侧,物体的受力情况、变化规律、运动程发生变化的转折点,在
高中物理解题方法论文
浅谈高中物理解题方法
【摘要】高中物理是相对较难学习的学科,学过高中物理的大部分同学,特别是物理成绩中差等的同学,总有这样的疑问:”上课听得懂,听得清,就是在课下做题时不会。”这是个普遍的问题,也是值得物理教师和同学们认真研究的问题。本文介绍物理学习中出现的问题的常见的几种学习方法。
【关键词】理想模型;等效替代法;微元法;近似处理方法 【中图分类号】g633
在运用物理知识解决实际问题的过程中,人们逐步积累和形成了物理学中处理问题的方法,在物理教学中,我们一定要使学生逐步领会和掌握这些方法。下面笔者结合自己多年的教学实践介绍几种在高中物理中常用的处理问题的方法: 一、等效替代法
等效法就是在保证某一方面效果相同的前提下,用理想的、熟悉的、简单的物理对象、物理过程、物理现象替代实际的、陌生的、复杂的物理对象、物理过程、物理现象的思想方法。合力与分力、运动的合成与分解、电阻的串联与并联、交流电的有效值等都是等效法在物理学中的实际应用。
等效法在物理解题中也有广泛的应用,主要有:物理模型的等效替代;物理过程的等效替代;作用效果的等效替代。
在应用等效法解题时,应知道两个事物的等效不是全方位的,只是局部的,特定的、某一方面的等效。因此在具体的问题中
高中物理解题方法论文
浅谈高中物理解题方法
【摘要】高中物理是相对较难学习的学科,学过高中物理的大部分同学,特别是物理成绩中差等的同学,总有这样的疑问:”上课听得懂,听得清,就是在课下做题时不会。”这是个普遍的问题,也是值得物理教师和同学们认真研究的问题。本文介绍物理学习中出现的问题的常见的几种学习方法。
【关键词】理想模型;等效替代法;微元法;近似处理方法 【中图分类号】g633
在运用物理知识解决实际问题的过程中,人们逐步积累和形成了物理学中处理问题的方法,在物理教学中,我们一定要使学生逐步领会和掌握这些方法。下面笔者结合自己多年的教学实践介绍几种在高中物理中常用的处理问题的方法: 一、等效替代法
等效法就是在保证某一方面效果相同的前提下,用理想的、熟悉的、简单的物理对象、物理过程、物理现象替代实际的、陌生的、复杂的物理对象、物理过程、物理现象的思想方法。合力与分力、运动的合成与分解、电阻的串联与并联、交流电的有效值等都是等效法在物理学中的实际应用。
等效法在物理解题中也有广泛的应用,主要有:物理模型的等效替代;物理过程的等效替代;作用效果的等效替代。
在应用等效法解题时,应知道两个事物的等效不是全方位的,只是局部的,特定的、某一方面的等效。因此在具体的问题中
大学物理04动力学
大学物理
2013-8-3
大学物理
第二章
运动定律与力学中的守恒定律
2.1 牛顿运动定律一、牛顿运动三定律二、常见的几种力 三、惯性系 四、应用牛顿运动定律解题步骤
2013-8-3
大学物理
伟大的科学家牛顿2013-8-3
《自然哲学的数学原理》3
大学物理
自然和自然规律隐藏在黑暗之中, 上帝说“让牛顿降生吧”, 一切就有了光明; 但是,光明并不久长,魔鬼又出现了, 上帝咆哮说:“让爱因斯坦降生吧”, 就恢复到现在这个样子。
2013-8-3
大学物理
少年时代的牛顿,天资平常,但很喜 欢制作各种机械模型,他有一种把自然现 象、语言等进行分类、整理、归纳的强烈 嗜好,对自然现象极感兴趣。 青年牛顿1661年考入剑桥大学三一学院
1665年获学士学位1666年6月22日至1667年3月25日, 两度回到乡间的老家2013-8-3 5
大学物理
全面丰收的时期1667年牛顿返回剑桥大学当研究生, 次年获得硕士学位
1669年由于巴洛的推荐,接受了“卢 卡斯数学讲座”的职务1669年发现了二项式定理
1672年,由于制造反射望远镜的成就被接 纳为伦敦皇家学会会员1672年进行了光谱色分析试验 1680年前后提出万有引力理论
1687年出版了《自然哲学的数学原理》2013-8-
动力学中三种典型物理模型
专题强化四 动力学中三种典型物理模型
专题解读 1.本专题是动力学方法在三类典型模型问题中的应用,其中等时圆模型常在选择题中考查,而滑块—木板模型和传送带模型常以计算题压轴题的形式命题.
2.通过本专题的学习,可以培养同学们审题能力、建模能力、分析推理能力和规范表达等物理学科素养,针对性的专题强化,通过题型特点和解题方法的分析,能帮助同学们迅速提高解题能力.
3.用到的相关知识有:匀变速直线运动规律、牛顿运动定律、相对运动的有关知识.
一、“等时圆”模型 1.两种模型(如图1)
图1
2.等时性的证明
设某一条光滑弦与水平方向的夹角为α,圆的直径为d(如图2).根据物体沿光滑弦做初速度为零的匀加速直线运动,加速度为a=gsin α,位移为s=dsin α,所以运动时间为t0=2dsin α=gsin α2d. g2s=a
图2
即沿同一起点或终点的各条光滑弦运动具有等时性,运动时间与弦的倾角、长短无关.
二、“传送带”模型 1.水平传送带模型 项目 情景1 图示 ①可能一直加速 ②可能先加速后匀速 ①v0>v,可能一直减速,也可能先减速再匀速 情景2 ②v0=v,一直匀速 ③v0 项目 情景1 情景2 三、“滑块—木板”模型 1.模型特
结构动力学
《结构动力学》读书报告
斜拉桥地震响应分析
摘要:斜拉桥在地震波荷载作用下有极其复杂的振动响应,本文采用ANSYS有限元软件对某斜拉桥在centro波作用下动力响应进行了分析。得出结论:ANSYS有限元软件能为复杂大跨度结构的抗震性能分析提供高效、可靠的计算平台;对于复杂结构或异性结构,谱分析的结果未必偏于安全,这时采用地震波瞬态分析更精确。因此,应用ANSYS有限元软件分析斜拉桥的动力响应有较好的效果,并且centro波可以作为结构动荷载的近似标准波使用。 关键词:斜拉桥;动力分析;centro波;ANSYS有限元
一、概述
对于桥梁而言,地震所带来的破坏,无论从数量上,还是从程度上,都大大超过其他自然灾害的破坏。严重的桥梁灾害不仅直接影响交通,而且经常引发次生灾害,从而加剧地震灾害的严重性。为了减轻地震所造成的损失,既要对桥梁做好抗震加固工作,更需在桥梁设计上采取措施以满足抗震要求。因此,对桥梁的地震响应进行相应的分析是有必要的。
1.地震作用理论
(1)直接动力分析理论
1900年,日本大森房吉教授提出了静力理论。静力理论不考虑建筑物的动力特性。假设结构物为绝对刚性,地震时建筑物的运动与地面运动完全一致,建筑物的最大加速度等于地面运动的
动力学经验
首先是反应速率的输入问题。
先谈谈反应速率的定义。我觉得反应速率应该定义为:单位时间、单位区域内的反应量。比如对于间歇反应器最常用的形式为 ;当反应速率用于连续流动反应器(CSTR、PFR)时,反应速率可以定义为单位体积的流率变化 ,上述两者量纲一致;对于非均相催化反应器(PBR),反应速率通常定义为单位质量催化剂上的流率变化 。而这两种量纲的反应速率形式在Aspen plus中均可以应用。以下以POWERLAW形式的速率方程说明。方程的输入(包括幂指数的输入,逆反应等)我就不说了。下图为kinetic页面:
Reacting phase:是指反应发生的相,可以选择气相、液相、液相1、液相2等; Ratebasis:是指反应速率的定义基准,如单位体积、单位催化剂质量,也就是上我前面说到的两种不同量纲的反应速率所用的基准。
k:应该是zzuwangshilei指的反应速率常数吧,我觉得这个应该是速率常数的指前因子,两者具有相同的量纲,由反应速率的定义和反应级数共同决定。特别注意的是:这个k的单位一定是SI制的,如图:
还要注意其中的物质的量的单位不是mol,而是kmol,这个比较怪,貌似是Aspen的规定;
n:是温度的校正指数; E:活化能,
化学动力学
1.某反应进行时,反应物浓度与时间成线性关系,则此反应的衰期与反应物初始浓度(A)
A.成正比 B.成反比 C.平方成反比 D.无关
解析:反应为零级反应
2.已知二级反应的半衰期 t?=1/k2c0,则t?应为(B)
A.2/k2c0 B.1/3k2c0 C.3/k2c0 D.4/k2c0
解析:t?=1/k2c0×1/4÷(1-1/4)=1/3k2c0
3.某反应只有一种反应物,其转化率达到75%的时间是转化率达到50%的时间的两倍,反应转化率达到64%的时间转化率达到x %的时间的两倍,则x 为 ( C ) A.32 B.36 C.40 D.60 解析:一级反应的特点: t1/2 : t3/4 : t7/8= 1 : 2 : 3 t = 1/k1ln[1/(1?α)]
t(64%)/t(x %)=2=ln[1/(1?0.64)]/ln[1/(1?x %)] [1/(1?x %)]= 1/0.36 ? 1?x % =0.6 x % = 0.4
4.某反应,其半衰期与起始浓度成反比, 则反应完成87.5%所需时 间