地理坐标系与投影坐标系的定义域区别
“地理坐标系与投影坐标系的定义域区别”相关的资料有哪些?“地理坐标系与投影坐标系的定义域区别”相关的范文有哪些?怎么写?下面是小编为您精心整理的“地理坐标系与投影坐标系的定义域区别”相关范文大全或资料大全,欢迎大家分享。
地理坐标系与投影坐标系
大地水准面,地球椭球体,大地基准面,地理坐标系,投影坐标系
地理坐标系与投影坐标系
1.真实地球:
2. 大地水准面
经大地测量,获取到大地水准面:
静止的水面称为水准面,水准面是受地球表面重力场影响而形成的,是一个处处与重力方向垂直的连续曲面,因此是一个重力场的等位面。
大地水准面是由静止海水面并向大陆延伸所形成的不规则的封闭曲面。它是重力等位面,即物体沿该面运动时,重力不做功(如水在这个面上是不会流动的)。大地水准面是描述地球形状的一个重要物理参考面,也是海拔高程系统的起算面。
大地水准面,地球椭球体,大地基准面,地理坐标系,投影坐标系
3. 地球椭球体(Ellipsoid) 地表是一个无法用数学公式表达的曲面,
这样的曲面不能作为测量和制图的基准面。假想一个扁率极小的椭圆,绕大地球体短轴旋转所形成的规则椭球体称之为地球椭球体。地球椭球体表面是一个规则的数学表面,可以用数学公式表达,所以在测量和制图中就用它替代地球的自然表面。
地球椭球体有长半径和短半径之分,长半径(a)即赤道半径,短半径(b)即极半径。f=(a-b)/a为椭球体的扁率,表示椭球体的扁平程度。由此可见,地球椭球体的形状和大小取决于a、b、f 。因此,a、b、f被称为地球椭球体的三要素。
大地水
各种坐标系的定义
各种坐标系的定义
一:空间直角坐标系
空间直角坐标系的坐标原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,
Y轴位于赤道面上切按右手系于X轴呈90度夹角,某点中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
空间直角坐标系可用如下图所示:
二:大地坐标系:
大地坐标系是采用大地纬度、经度和大地高程来描述空间位置的。纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高师空间的点沿着参考椭球的法线方向到参考椭球面的距离。
附:经度和纬度的详细概念,呵呵。
经度和纬度都是一种角度。经度是个面面角,是两个经线平面的夹角。因所有经线都是一样长,为了度量经度选取一个起点面,经1884年国际会议协商,决定以通过英国伦敦近郊、泰晤士河南岸的格林尼治皇家天文台(旧址)的一台主要子午仪十字丝的那条经线为起始经线,称为本初子午线。本初子午线平面是起点面,终点面是本地经线平面。某一点的经度,就是该点所在的经线平面与本初子午线平面间的夹角。在赤道上度量,自本初子午线平面作为起点面,分别往东往西度量,往东量值称为东经度,往西量值称为西
各种坐标系的定义
各种坐标系的定义
一:空间直角坐标系
空间直角坐标系的坐标原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,
Y轴位于赤道面上切按右手系于X轴呈90度夹角,某点中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
空间直角坐标系可用如下图所示:
二:大地坐标系:
大地坐标系是采用大地纬度、经度和大地高程来描述空间位置的。纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高师空间的点沿着参考椭球的法线方向到参考椭球面的距离。
附:经度和纬度的详细概念,呵呵。
经度和纬度都是一种角度。经度是个面面角,是两个经线平面的夹角。因所有经线都是一样长,为了度量经度选取一个起点面,经1884年国际会议协商,决定以通过英国伦敦近郊、泰晤士河南岸的格林尼治皇家天文台(旧址)的一台主要子午仪十字丝的那条经线为起始经线,称为本初子午线。本初子午线平面是起点面,终点面是本地经线平面。某一点的经度,就是该点所在的经线平面与本初子午线平面间的夹角。在赤道上度量,自本初子午线平面作为起点面,分别往东往西度量,往东量值称为东经度,往西量值称为西
2000国家大地坐标系与现行坐标系关系 - 图文
详解| 2000国家大地坐标系与现行坐标系关系 2018-04-16 国家局 测绘学报
《测绘学报》
1.采用2000国家大地坐标系对现有地图的影响
大地坐标系是测制地形图的基础,大地坐标系的改变必将引起地形图要素产生位置变化。一般来说,局部坐标系的原点偏离地心较大(最大的接近200m),无论是1954年北京坐标系,还是1980西安坐标系的地形图,在采用地心坐标系后都需要进行适当改正。
计算结果表明,1954年北京坐标系改变为2000国家大地坐标系。在56°N~16°N和72°E~135°E范围内若不考虑椭球的差异,1954年北京坐标系下的地图转换到2000系下图幅平移量为:X平移量为-29~-62m,Y方向的平移量为-56~+84m。1980西安坐标系下的X平移量为-9~+43m,Y方向的平移量为+76~+119m。因此,坐标系的更换在1:25万以大比例尺地形图中点(含图廓点)的地理位置的改变值已超过制图精度,必须重新给予标记。 对于1:25万以小地形图,由坐标系更换引起图廓点坐标的变化以及图廓线长度和方位的变动在制图精度内,可以忽略其影响,对于1:25万比例尺地形图,考虑到实际成图精度,实际转换时也无需考虑转换。 根据实际计算表明,由于坐
常用坐标系
一、常用坐标系 1、北京坐标系
北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
1954年北京坐标系的历史:
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系
1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市
坐标系转换
坐标系转换问题
1.坐标系基础知识
1.1 1954年北京坐标系
1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京,而在前苏联的普尔科沃。相应的椭球为克拉索夫斯基椭球。
1954年北京坐标系建立以来,我国依据这个坐标系建成了全国天文大地网,完成了大量的测绘任务。但是随着测绘新理论、新技术的不断发展,人们发现该坐标系存在如下缺点:
(1)椭球参数有较大误差。克拉索夫斯基椭球参数与现代精确的椭球参数相比,长半轴约大109m。
(2)参考椭球面与我国大地水准面存在着自西向东明显的系统性的倾斜,在东部地区大地水准面差距最大达+68m。着使得大比例尺地图反映地图面的精度受到影响,同时也对观测元素的归算提出了严格要求。
(3)几何大地测量和物理大地测量应用的参考面不统一。我国在处理重力数据时采用赫尔默特1900~1909年正常重力公式,与这个公式相应的赫尔默特扁球不是旋转椭球,它与克拉索夫斯基椭球是不一致的,这给实际工作带来了麻烦。 (4)定向不明确。椭球短轴的指向既不是国际上比较普遍采用的国际协议(习用)原点CIO(Conventional International Origin),也不是我国地极原点
JYD1968.0;起
常用坐标系
一、常用坐标系 1、北京坐标系
北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
1954年北京坐标系的历史:
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系
1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市
坐标系转换
坐标系转换问题
1.坐标系基础知识
1.1 1954年北京坐标系
1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京,而在前苏联的普尔科沃。相应的椭球为克拉索夫斯基椭球。
1954年北京坐标系建立以来,我国依据这个坐标系建成了全国天文大地网,完成了大量的测绘任务。但是随着测绘新理论、新技术的不断发展,人们发现该坐标系存在如下缺点:
(1)椭球参数有较大误差。克拉索夫斯基椭球参数与现代精确的椭球参数相比,长半轴约大109m。
(2)参考椭球面与我国大地水准面存在着自西向东明显的系统性的倾斜,在东部地区大地水准面差距最大达+68m。着使得大比例尺地图反映地图面的精度受到影响,同时也对观测元素的归算提出了严格要求。
(3)几何大地测量和物理大地测量应用的参考面不统一。我国在处理重力数据时采用赫尔默特1900~1909年正常重力公式,与这个公式相应的赫尔默特扁球不是旋转椭球,它与克拉索夫斯基椭球是不一致的,这给实际工作带来了麻烦。 (4)定向不明确。椭球短轴的指向既不是国际上比较普遍采用的国际协议(习用)原点CIO(Conventional International Origin),也不是我国地极原点
JYD1968.0;起
2000国家大地坐标系的定义
2000国家大地坐标系的定义 国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的4个基本参数的定义。2000国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000.0的地球参考极的方向,该历元的指向由国际时间局给定的历元为1984.0的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转,X轴由原点指向格林尼治参考子午线与地球赤道面(历元2000.0)的交点,Y轴与Z轴、X轴构成右手正交坐标系。采用广义相对论意义下的尺度。2000国家大地坐标系采用的地球椭球参数的数值为: 长半轴 a=6378137m 扁率 f=1/298.257222101 地心引力常数 GM=3.986004418×1014m3s-2 自转角速度 ω=7.292l15×10-5rad s-1 其它参数见下表: 短半径b(m) 极曲率半径c (m) 第一偏心率e 第一偏心率平方e2 第二偏心率 第二偏心率平方2 1/4子午圈的长度Q(m) 椭球平均半径R1(m) 6356752.31414 63995
AutoCAD坐标系的使用
AutoCAD坐标系的使用
任意物体在空间中的位置都是通过一个坐标系来定位的。在AutoCAD的图形绘制中,也是通过坐标系来确定相应图形对象的位置的,坐标系是确定对象位置的基本手段。理解各种坐标系的概念,掌握坐标系的创建以及正确的坐标数据输入方法,是学习CAD制图的基础。
在AutoCAD2004中,坐标系可分为世界坐标系(WCS)和用户坐标系(UCS);按坐标值参考点的不同,可以分为绝对坐标系和相对坐标系;按照坐标轴的不同还可以分为直角坐标系、极坐标系。
系统默认坐标系为世界坐标系(WCS)。根据笛卡尔坐标系的习惯,沿X轴正方向(向右)为水平距离增加的方向,沿Y轴正方向(向上)为竖直距离增加的方向,垂直于XY平面,沿Z轴正方向从所视方向向外为距离增加的方向。这一套坐标轴按右手规则确定了世界坐标系,简称WCS。世界坐标系WCS的重要之处在于:它总是存在于每一个设计的图形之中,并且不可改变,图2-1为世界坐标系(WCS)的显示图标。
图2-1
单击菜单【视图】→【工具栏】命令、打开〖自定义〗对话框,在〖工具栏〗中选择【UCS】,打开〖UCS〗工具栏如图2-2所示,使用该工具栏可以建立和编辑UCS坐标系。
图2-2
l :建立新的坐标系。
l