数学高中三角函数公式大全
“数学高中三角函数公式大全”相关的资料有哪些?“数学高中三角函数公式大全”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数学高中三角函数公式大全”相关范文大全或资料大全,欢迎大家分享。
高中三角函数公式大全
高中三角函数公式大全
2009年07月12日 星期日 19:27
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tan(A-B) =
tanA?tanB1-tanAtanBtanA?tanB1?tanAtanBcotAcotB-1cotB?cotAcotAcotB?1cotB?cotA
cot(A+B) =cot(A-B) =倍角公式 tan2A =
2tanA1?tanA2
Sin2A=2SinA?CosA
Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A 三倍角公式
sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana·tan(半角公式 sin(
A2A2A2A2A2?3+a)·tan(
?3-a)
)=
1?cosA21?cosA21?cosA1?cosA1?cosA1?cosA1?cosAsinA
cos()=
高中三角函数公式大全
高中三角函数公式大全
高中三角函数公式大全
2009年07月12日 星期日 19:27
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB tan(A+B) =
tan(A-B) =tanA tanB1-tanAtanBtanA tanB
1 tanAtanB
cotAcotB-1
cotB cotA
cotAcotB 1
cotB cotA cot(A+B) =cot(A-B) =
倍角公式 tan2A =2tanA
1 tanA2
Sin2A=2SinA CosA
Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A
三倍角公式
sin3A = 3sinA-4(sinA)3
cos3A = 4(cosA)3-3cosA
tan3a = tana·tan(
半角公式 sin(A2
A2
A2
A2
A2 3+a)·tan( 3-a) )=1 cosA21 cosA21 cosA1 cosA1 cosA1 cosA1 cosAsinA cos(
高中三角函数公式大全(免费)
高中三角函数公式大全
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB tanA tanBtan(A+B) = 1-tanAtanB
tanA tanBtan(A-B) = 1 tanAtanB
cotAcotB-1cot(A+B) = cotB cotA
cotAcotB 1cot(A-B) = cotB cotA
倍角公式 2tanAtan2A = 21 tanA
Sin2A=2SinA CosA Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A
三倍角公式 sin3A = 3sinA-4(sinA)3
cos3A = 4(cosA)3-3cosA tan3a = tana·tan(+a)·tan(-a) 33
半角公式 sin(A cosA)= 22
A cosA)= 22cos(
tan(A cosA)= 21 cosAA cosA)= 21 cosAcot(
tan(A1 cosAsinA)== 21 cos
高中三角函数公式表
RT
高中三角函数公式表
发布时间:2012-8-22 浏览人数:347 本文编辑:高考学习
注: ⑴对与以上高中数学三角函数公式我们务必要知道其推导思路,从而清晰地“看出”三角函数之间的联系,了解三角函数公式的变化形式.如这个三角函数公式
从而可做到:正用、逆用、变形用自如使用各公式.
⑵三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备. ⑶三角函数恒等变形的基本策略。
RT
高中三角函数公式总表
三角公式总表
bca=== 2R(RsinAsinBsinC
nπR112n R2
⒈L弧长=R=180 S扇=LR=R=
22360
⒉正弦定理:
为三角形外接圆半径)
⒊余弦定理:a2=b2+c2-2bccosA b2=a2+c2-2accosB
c=a+b
2
2
2
b2 c2 a2-2abcosC cosA
2bc
2
4R
⒋S⊿=1a ha=1absinC=1bcsinA=1acsinB=abc=2R2sinAsinBsinC
2
2
2
a2sinBsinCb2sinAsinCc2sinAsinB====pr=p(p a)(p b)(p c)
2sinB2sinC2sinA
(其中p 1(a b c), r为三角形内切圆半径)
2
⒌同角关系:
ysin
⑴商的关系:①tg ==
x
③sin ⑤cos
cos
=sin sec ②ctg
xcos
cos csc ysin
r1y
tg csc cos tg ④sec
xcos r
xr1
sin ctg ⑥csc ctg sec rysin
⑵倒数关系:sin csc cos sec tg ctg 1 ⑶平方关系:sin
高中三角函数公式总表
三角公式总表
bca=== 2R(RsinAsinBsinC
nπRn R2112
⒈L弧长=R=180 S扇=LR=R =
36022
⒉正弦定理:
为三角形外接圆半径)
⒊余弦定理:a2=b2+c2-2bccosA b2=a2+c2-2accosB
c=a+b
2
2
2
b2 c2 a2
-2abcosC cosA
2bc
⒋S⊿=1a ha=1absinC=1bcsinA=1acsinB=abc=2R2sinAsinBsinC
2
2
2
2
4R
a2sinBsinCb2sinAsinCc2sinAsinB====pr=p(p a)(p b)(p c)
2sinB2sinC2sinA
(其中p 1(a b c), r为三角形内切圆半径)
2
⒌同角关系:
ysin
⑴商的关系:①tg ==
x
③sin ⑤cos
cos
=sin sec ②ctg
xcos
cos csc ysin
r1y
tg csc cos tg ④sec
xcos r
r1x
ctg sec sin ctg ⑥csc
ysin r
⑵倒数关系:sin csc cos sec tg ctg 1 ⑶平方关系:si
高中三角函数公式表
RT
高中三角函数公式表
发布时间:2012-8-22 浏览人数:347 本文编辑:高考学习
注: ⑴对与以上高中数学三角函数公式我们务必要知道其推导思路,从而清晰地“看出”三角函数之间的联系,了解三角函数公式的变化形式.如这个三角函数公式
从而可做到:正用、逆用、变形用自如使用各公式.
⑵三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备. ⑶三角函数恒等变形的基本策略。
RT
三角函数公式大全
三角函数各类公式
Trigonometric
1.诱导公式
sin(-a) = - sin(a)
cos(-a) = cos(a)
sin(π/2 - a) = cos(a)
cos(π/2 - a) = sin(a)
sin(π/2 + a) = cos(a)
cos(π/2 + a) = - sin(a)
sin(π - a) = sin(a)
cos(π - a) = - cos(a)
sin(π + a) = - sin(a)
cos(π + a) = - cos(a)
2.两角和与差的三角函数
sin(a + b) = sin(a)cos(b) + cos(α)sin(b)
cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
sin(a - b) = sin(a)cos(b) - cos(a)sin(b)
cos(a - b) = cos(a)cos(b) + sin(a)sin(b)
tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)]
三角函数各类公式
tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)]
3.和差化积公式
sin(a) + s
三角函数公式大全
三角函数公式大全
几个一定要掌握的角(其中还有120,135,150根据公式自行推出)
sin30°=1/2 sin45°=√2/2 sin60°=√3/2 cos30°=√3/2 cos45°=√2/2 cos60°=1/2 tan30°=√3/3 tan45°=1 tan60°=√3 cot30°=√3 cot45°=1 cot60°=√3/3
几个会有几率考到角度(这些是根据下面的公式推出来的)
sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4
cos75°=(√6-√2)/4(这四个可根据sin(45°±30°)=sin45°cos30°±cos45°sin30°得出) sin18°=(√5-1)/4 (这个值在高中竞赛和自招中会比较有用,即黄金分割的一半)
正弦定理:在△ABC中,a / sin A = b / sin B = c / sin C = 2R (其中,R为△ABC的外接圆的半径。)
余弦定理:在△ABC中
三角函数,数列公式大全
三角函数公式:(1).弧度制:?rad?180,1rad? 弧长公式:l??r,扇形面积公式:S?o180o??57o18'
121?r?lr 22x2?y2则:
(2)定义式:设角?终边上一点为P?x,y?,r?OP?sin??yxy,cos??,tan??; rrx22(3)同角基本关系式:sin??cos??1,tan??(4)诱导公式:奇变偶不变,符号看象限。
sin?; cos?(5)两角和差公式:sin??????sin?cos??cos?sin?,
cos??????cos?cos??sin?sin?, tan??????(6)二倍角公式:sin2??2sin?cos?,tan2??tan??ta?n ;1?ta?nta?n2tan?; 21?tan?cos2??cos2??sin2??1?2sin2??2cos2??1;
111sin2?,sin2???1?cos2??,cos2???1?cos2??; 222b22(8)合一公式:asin??bcos??a?bsin?????,其中tan??。
a(7)降幂公式:sin?cos??2.三角函数图像和性质:
(二)、函数图像的四种变换: