空间几何大题
“空间几何大题”相关的资料有哪些?“空间几何大题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“空间几何大题”相关范文大全或资料大全,欢迎大家分享。
立体几何大题练习(文科)
立体几何大题练习(文科):
1.如图,在四棱锥S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=
,侧面SAD⊥底面ABCD.
(1)求证:平面SBD⊥平面SAD;
(2)若∠SDA=120°,且三棱锥S﹣BCD的体积为
,求侧面△SAB的面积.
【分析】(1)由梯形ABCD,设BC=a,则CD=a,AB=2a,运用勾股定理和余弦定理,可得AD,由线面垂直的判定定理可得BD⊥平面SAD,运用面面垂直的判定定理即可得证;
(2)运用面面垂直的性质定理,以及三棱锥的体积公式,求得BC=1,运用勾股定理和余弦定理,可得SA,SB,运用三角形的面积公式,即可得到所求值. 【解答】(1)证明:在梯形ABCD中,AB∥DC,∠ABC=90°,BC=CD=设BC=a,则CD=a,AB=2a,在直角三角形BCD中,∠BCD=90°, 可得BD=
a,∠CBD=45°,∠ABD=45°,
=
a,
,
由余弦定理可得AD=则BD⊥AD,
由面SAD⊥底面ABCD.可得BD⊥平面SAD, 又BD?平面SBD,可得平面SBD⊥平面SAD;
(2)解:∠SDA=120°,且三棱锥S﹣BCD的体积为由AD=SD=
a,
a,
a,
,
立体几何求体积大题
立体几何中有关体积问题
一、知识归纳
1、柱体体积公式:V?S.h
2、椎体体积公式:V?13S.h 3、球体体积公式:V?433?R
二、点到平面的距离问题 求解方法:
1、几何法:等体积法求h
2、向量法: 点A到面?的距离d?AB?nn
?其中,n是底面的法向量,点B是面?内任意一点。题型分析:
1、如图,在三棱柱ABC?A1B1C1中,AC?BC,AB?BB1AC?BC?BB1?2,D为AB中点,且CD?DA1
(1)求证:BB1?平面ABC (2)求证:BC1∥平面CA1D (3)求三棱椎B1-A1DC的体积
A1C1 B 1 AC D B
2、如图,在四棱锥E?ABCD中,?ADE是等边三角形,侧面ADE?地面ABCD,AB∥DC,且
BD?2DC?4,AD?3,AB?5.
(1)若F是EC上任意一点,求证:面BDF?面ADE (2)求三棱锥C?BDE的体积。
E F C D
AB
3、如图,在棱长为2的正方体中,E,F分别为
DD1、DB的中点。
(1)求证:EF∥平面ABC1D1 (2)求证EF?B1C (2)求三棱锥B1?EFC的体积。 D1C1
AB11 E D C F AB
空间解析几何试题
空间解析几何试卷
一、填空题(本大题共计30分,每空3分。请把正确答案填在横线上)
1. 设向量a???1,?1,0?,b??2,1,1?,则a在b上的射影是_____________,a是_______________.
2. 设向量a??4,?5,3?,向量b与a共线,反向且模为252,那么向量b的坐标是 ________________.
1,1,1?,b??x,2,3?, 如果a,b垂直, 那么x=_________. 3. 已知向量a??1,0,?1?,b??2,3,0?,c??0,1,2?,则由这3个向量张成的平行六面4. 已知向量a???????????????????体的体积是_________.
y?1xz?1?3?z与直线?1?y? 间的距离是_____________. ?22?2x?ayz?? 与平面x-2y+bz=0平行,则a,b的值分别是6. 若直线3215. 直线x?2?______________.
?x?y?1?07. 经过直线?且与直线x?y?2z平行的平面的方程是
x?y?z?2?0?_________________.
?x2?y2?z?08. 空间曲线?在x0y坐标面上的射影曲线和射影柱面的方程
空间几何中的向量方法
第一讲:空间几何中的向量方法---------坐标运算与法向量
一、空间向量的坐标运算
??1. 若a?(a1,a2,a3),b?(b1,b2,b3),则
(1)a?b?(a1?b1,a2?b2,a3?b3); (2)a?b?(a1?b1,a2?b2,a3?b3); (3)?a?(?a1,?a2,?a3),??R; (4)a?b?a1b1?a2b2?a3b3; (5)a//b?a1??b1,a2??b2,a3??b3,(b?0,??R); (6)a?b?a1b1?a2b2?a3b3?0; (7)a?(8)cos?a,b??22a?a?a12?a2?a3;
a1b1?a2b2?a3b3a?b. ?222222a?ba1?a2?a3?b1?b2?b3?????????例1 已知a?(2,?3,5),b?(?3,1,?4),求a?b,a?b,8a,a?b,的坐标.
????2.若A(x1,y1,z1),B(x2,y2,z2),则AB?(x2?x1,y2?y1,z2?z1)
练习1: 已知PA垂直于正方形ABCD所在的平面,M、N分别是AB,PC的中点,且PA=AD=1,
?????求向量MN的坐标.
二、空间直角坐标系中平面
高考立体几何大题及答案(理)
名师精编 欢迎下载
1.(2009全国卷Ⅰ)如图,四棱锥S?ABCD中,底面ABCD为矩形,SD?底面ABCD,
AD?2,DC?SD?2,点M在侧棱SC上,∠ABM=60。
(I)证明:M是侧棱SC的中点;
????求二面角S?AM?B的大小。
2.(2009全国卷Ⅱ)如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1(Ⅰ)证明:AB=AC(Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的
A1 C1 角的大小
B1 D A B E
C 3.(2009浙江卷)如图,DC?平面ABC,EB//DC,AC?BC?EB?2DC?2,
?ACB?120,P,Q分别为AE,AB的中点.(I)证明:PQ//平面ACD;(II)求AD与平
面ABE所成角的正弦值.
4.(2009北京卷)如图,四棱锥P?ABCD的底面是正方形,
PD?底面ABCD,点E在棱PB上.(Ⅰ)求证:平面AEC?平面PDB;(Ⅱ)当PD?2AB且E为PB的中点时,
PM求AE与平面PDB所成的角的大小.
5.(2009江西卷)如图,在四棱锥P?AB
解析几何100题经典大题汇编
1 4((2011巢湖一检)已知直线1l y kx =+:,椭圆E :22
21(0)9x y m m
+=>.(Ⅰ)若不论k 取何值,直线l 与椭圆E 恒有公共点,试求出m 的取值范围及椭圆离心率e 关于m 的函数式;
(Ⅱ)当k =时,直线l 与椭圆E 相交于A 、B 两点,与y 轴交于点M ,若2AM MB =uuu r uuu r ,求椭圆E 方程.
解:(Ⅰ)∵直线l 恒过定点M(0,1),且直线l 与椭圆E 恒有公共点,∴点M(0,1)在椭圆E 上或
其内部,得()22
201109m m
+≤>,解得13m m ≥≠,且.(联立方程组,用判别式法也可)当13m ≤<时,椭圆的焦点在x
轴上,e =;当3m >时,椭圆的焦点在y
轴上,e =.
∴
)()133.m e m ≤<=??>??
, (Ⅱ)
由222
119y x y m ?=+????+=??,消去y
得222(10)9(1)0m x m +++-=. 设11()A x y ,,22()B x y ,
,则12x x +=,21229(1)10
m x x m -=+②. ∵M(0,1),∴由2AM MB = 得122x x =- ③. 由①③得
2x =④. 将③④代入②得,
2
229(1)210m
空间向量与立体几何
关于空间向量与立体几何
1 空间向量与立体几何
一、平行与垂直问题
(一) 平行
线线平行 线面平行 面面平行 注意:这里的线线平行包括线线重合,线面平行包括直线在平面内,面面平行包括面面重合。
(二) 垂直
线线垂直 线面垂直 面面垂直 注意:画出图形理解结论
二、夹角与距离问题
(一) 夹角
(二)距离
点、直线、平面之间的距离有7种。点到平面的距离是重点.
1.已知四棱锥P A B C D -的底面为直角梯形,//A B D C ,
设直线,l m 的方向向量分别为,a b ,平面 ,αβ的法向量分别为,u v ,则
l ∥m ?a ∥b a k b ?=
;
l ∥α?a
u ⊥ 0a u ??=
;
α∥β?u ∥v .u k v ?=
设直线,l m 的方向向量分别为
,a b ,平面 ,αβ的法向量分别为,u v ,则
l ⊥α?a ∥u a k u ?= ;
l ⊥m ?a ⊥b 0a b ??=
;
α⊥β?u ⊥v .0=??v u
设直线,l m 的方向向量分别为,a b ,平面,αβ 的法向量分别为,u v ,则
①两直线l ,m 所成的角为θ(02π
θ≤≤),cos a b
a b
θ?=
;
②直线l 与平面α
立体几何专题——空间角
立体几何
立体几何专题:空间角
第一节:异面直线所成的角
一、基础知识
1.定义: 直线a、b是异面直线,经过空间一交o,分别a //a,b //b,相交直线a b 所成的
锐角(或直角)叫做 。 2.范围: 0,
2
3.方法: 平移法、问量法、三线角公式
(1)平移法:在图中选一个恰当的点(通常是线段端点或中点)作a、b的平行线,构造一
个三角形,并解三角形求角。 (2)向量法:
可适当选取异面直线上的方向向量,利用公式cos cos a,b
求出来
方法1:利用向量计算。选取一组基向量,分别算出
代入上式 方法2:利用向量坐标计算,建系,确定直线上某两点坐标进而求出方向向量
(x1,y1,z1) (x2,y2,z2) co s
x1x2 y1y2 z1z2
x1 y1 z1
2
2
2
x2 y2 z2
222
(3)三线角公式 用于求线面角和线线角 斜线和平面内的直线与斜线的射影所成角的余弦之积等于
斜线和平面内的直线所成角的余弦 即:cos 1cos 2 cos 二、例题讲练
C
例1、(2007年全国高考)如图,正四棱柱ABCD A1B1C1D1中,
中考期间几何大题参考答案
1.如图,在△ABC中,∠ACB=90゜,P为AC上一点,PQ⊥AB于Q,AM⊥AB交BP的延长线于M,MN⊥AC于N,AQ=MN. (1)求证:AP=AM; (2)求证:PC=AN.
考点: 全等三角形的判定与性质;角平分线的性质. 菁优网版权所有专题: 证明题. 分析: (1)要点是确定一对全等三角形△AQP≌△MNA,得到AP=AM; (2)利用(1)中的全等三角形的性质得到AN=PQ;然后推出BP为角平分线,利用角平分线的性质得到PC=PQ;从而得到PC=AN. 解答: 证明:(1)∵BA⊥AM,MN⊥AC, ∴∠BAM=∠ANM=90°, ∴∠PAQ+∠MAN=∠MAN+∠AMN=90°, ∴∠PAQ=∠AMN, ∵PQ⊥AB MN⊥AC, ∴∠PQA=∠ANM=90°, ∴在△PQA与△ANM中,, ∴△PQA≌△ANM(ASA) ∴AP=AM; (2)由(1)知,△PQA≌△ANM, ∴AN=PQ AM=AP, ∴∠AMB=∠APM ∵∠APM=∠BPC,∠BPC+∠PBC=90°,∠AMB+∠ABM=90° ∴∠ABM=∠PBC ∵PQ⊥AB,PC⊥BC ∴PQ=PC(角平分线的性质), ∴PC=AN. 点评: 本题
空间解析几何教学大纲
空间解析几何教学大纲
课程名称:空间解析几何 课程编码:1102020006
英文名称:Analytic Geometry 学 时:40 学 分:2.5 适用专业:信息与计算科学 课程类别:必修 课程性质:学科基础课
教 材:解析几何 (吕林根 高等教育出版社) 一、课程性质与任务
解析几何是几何学的一个分支,是通过坐标法,运用代数工具研究几何问题的一门学科。它把数学的两个基本对象──“形”与“数”有机地联系起来,使得几何、代数和分析构成一个有机的整体,从而为数学的其它分支与几何学的互相渗透、互相促进奠定了基础,对高等数学的发展起了巨大的推动作用。解析几何是一门应用十分广泛的学科,它不仅在数学中,而且在物理、化学、工程技术以及经济等其它科学技术领域中都有广泛的应用。本课程的任务是介绍解析几何的基本方法和基本知识,培养学生运用解析几何的方法解决几何问题的能力,空间想象的能力,以及在实际问题中运用解析几何的方法和知识的能力,并为以后学习高等代数,数学分析和其它相关课程作准备。 二、课程教学的基本要求
本课程的教学目的是培养学生的空间想象能力以及解