微分方程建模方法
“微分方程建模方法”相关的资料有哪些?“微分方程建模方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“微分方程建模方法”相关范文大全或资料大全,欢迎大家分享。
常微分方程建模方法
第二章 微分方程方法
在应用数学方法解决实际问题的过程中,很多时候,要直接导出变量之间的函数关系较为困难,但要导出包含未知函数的导数或微分的关系式却较为容易,在这种情况下,就需要我们建立微分方程模型来研究。事实上,微分方程是研究函数变化规律的有力工具,在物理、工程技术、经济管理、军事、社会、生态、环境、人口、交通等各个领域中有着广泛的应用.下面我们就介绍如何应用微分方程模型来解决实际问题.
利用微分方程解决的问题通常可以分为两类:一类问题要求把未知变量直接表示为已知量的函数,这时,有些问题可以求出未知函数的解析表达式,在很多情况下只能利用数值解法;另一类问题只要求知道未知函数的某些性质,或它的变化趋势,这时可以直接根据微分方程定性理论来研究.
2.1 微分方程的一般理论
2.1.1微分方程简介
所谓微分方程就是表示未知函数、未知函数的导数与自变量之间的关系的方程?若未知函数是一元函数的微分方程? 叫常微分方程?而未知函数是多元函数的微分方程? 叫偏微分方程? 例如
y?4??4y'''?10y''?12y'?5y?sin2x (2.1.1) x2y''?12xy'?5y?0 (y')2?xy?0
微分方程建模学习
微分方程建模
一般说来,微分方程建模的方法大致可以分为以下的几个步骤:
1.根据实际问题的要求确定要研究的量,包括自变量、未知函数、必要的参数等以及它们各自的变化区间;
2.列方程。可以在合理假设的前提下,利用导数表示斜率、速度、变化率的实际意义,根据一些基本定理(几何的、物理的、化学的或生物学的等等)或规律,找出未知函数的导数(或微分)与相关各量之间的等量关系式,建立微分方程并确定定解条件(注:如果没有现成的定理可供利用,也可以用微元分析法与模拟近似法列出微分方程);
3.解微分方程;
4.对模型的适用性作出评价,即用已知的数据检验微分方程的解是否与实际相符。若结果与实际存在一定的差距,则还要对方程进行修正和调整,直到得出较满意的结果为止。
下面,我们就通过一些实例说明微分方程建模的具体步骤。
一.增长模型
在自然界和社会的经济活动中,许多量的变化都遵循着一个基本的规律:任一单位时间内的增量都与该量自身当时的大小成正比。运用这一基本规律,就可以建立起各种各样的增长模型。
1.马尔萨斯人口模型
严格地讲,讨论人口问题所建立的模型应属于离散型模型。但在人口基数很大的情况下,突然增加或减少的只是单一的个体或少数几个个体,相对于全体数量而言,这种改
数学建模~~微分方程模型
求实
创新
团结
奉献
第六章
微分方程模型
求实
创新
团结
奉献
本章内容 微分方程基本概念及建模方法 一阶微分方程(组)模型 稳定性模型
求实
创新
团结
奉献
一、微分方程基本概念及建模方法
微分方程的阶 解:特解、通解、解析解、数值解 初值问题 在实际问题中,“改变”、“变化”、“增加”、“减少 ”等关键词提示我们什么量在变化,关键词“速率”、“增 长”、“衰变”、“边际的”等常涉及导数。
求实
创新
团结
奉献
建立微分方程常用方法
运用已知物理定理 利用平衡与增长式 运用微元法
应用分析法
求实
创新
团结
奉献
1、运用已知物理定律
例1、物体冷却过程将物体放置在空气中,在时刻t=0时,测量得它的温度为u0=1500C,10分 钟后测量得温度为u1=1000C.我们要求此物体的温度u和时间t的关系,并计 算20分钟后物体的温度。这里我们假定空气的温度保持在ua=240C. Newton冷却定律:将温度为T的物体放入处于常温m的介质中时,T的 变化速率正比于 T与周围介质的温度差。解:设物体在 t 时刻的温度为 u u t , t 0 , 根据牛顿冷却定律知, 成正比,建立模型如下: du k (u u a ) dt
数学建模 微分方程模型
人口模型在研究某些实际问题时,经常无法直接得到各变量之间的联系,问题的特 征往往会给出关于变化率的一些关系。利用这些关系,我们可以建立相应的微 分方程模型。在自然界以及工程技术领域中,微分方程模型是大量存在的。它 甚至可以渗透到人口问题以及商业预测等领域中去,其影响是非常广泛的。 从现在起,我们将向大家介绍一些很著名的微分方程模型,它们中,最简 单,也是最直观的,就是人口模型。对于人口模型,我们向大家介绍两个模型。 1、MALTHUS模型 18世纪末,英国人Malthus在研究了百余年的人口统计资料后认为,在 人口自然增长过程中,净相对增长率(出生率减去死亡率为净增长率)是常数。 设时刻t的人口为N(t),净相对增长率为r,我们把N(t)当作连续变 量来考虑。按照Malthus的理论,在t到t+ t时间内人口的增长量为N ( t Δt ) N ( t ) r Δt N ( t )
N ( t Δt ) N ( t ) r N( t ) Δt
令 t→0,则得到微分方程、dN rN dt
设t=0时人口为N0,即有Nt 0
N0
我们易求得微分方程在上面的初始条件下的解为 N ( t ) N0 ert 如果r>
数学建模 - 微分方程之减肥问题
摘要:在研究实际问题时,常常会联系到某些变量的变化率或导数, 这样所得到变量之间的关系式就是微分方模型。微分方程模型反映的是变量之间的间接关系,因此,在研究能量与运动之间的关系时,得到直接关系,就得求微分方程。
本文利用了微分方程模型求解实际问题,根据基本规律写出了平衡关系式,再利用一定的转换条件进行转化为简单明了的式子,求解出结果,对于第一问,利用微分方程反解出时间t(天),从而得到每个人达到自己理想目标的天数,同理,对于第二和第三问 ,利用以上方法,加上运动所消耗的能量,也可得出确切的时间,和所要保持体重所消耗的能量。
【关键字】:微分方程 转化 能量转换系数
1. 问题重述
现有五个人,身高、体重和BMI指数分别入下表一所示,体重长期不变,试为他们按照以下方式制定减肥计划,使其体重减至自己的理想目标,并维持下去: 人数 身高 体重 BMI 理想目标 1 1.7 100 34.6 75 2 1.68 112 33.5 80 表一 3 1.64 113 35.2 80 4 1.72 114 34.8 85 5 1.71 124 35.6 90 题目要求如下:
(1)在基本不运动的情况下安排计划,,每天吸收的热量保持下限,减
微分方程讲义
课程安排:2学期,周学时 4 , 共 96 学时. 主要内容:定积分的计算 要求:听课 、复习 、 作业 本次课题(或教材章节题目):第七章 微分方程 第一讲 微分方程的基本概念 教学要求: 微分方程的基本概念以及微分方程阶的概念。 重 点:微分方程的基本概念,微分方程阶的概念 难 点: 微分方程的概念; 微分方程阶的概念 教学手段及教具:讲授为主 讲授内容及时间分配: 1 复习 15分钟 2 微分方程的问题举例 30分钟 3 微分方程概念以及阶数练 45分钟 课后 作业 参考 资料 定积分的概念与性质 一、复习导数和高阶导数的概念 二、微分方程问题举例及引出 函数是客观事物的内部联系在数量方面的反映?利用函数关系又可以对客观事物的规律性进行研究?因此如何寻找出所需要的函数关系?在实践中具有重要意义?在许多问题中?往往不能直接找出所需要的函数关系?但是根据问题所提供的情况?有时可以列出含有要找的函数及其导数的关系式?这样的关系就是所谓微分方程?微分方程建立以
12微分方程
第十二章 微分方程
一、内容提要
(一)主要定义
【定义12.1】 微分方程 表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程.未知函数是一元函数的叫做常微分方程; 未知函数是多元函数的叫做偏微分方程.
【定义12.2】 微分方程的阶 微分方程中出现的未知函数的最高阶导数的阶数,称为微分方程的阶.
一般形式为: Fx,y,y?,y??,?,y标准形式为:y?n??(n)??0.
??fx,y,y?,?,y?n?1?.
?【定义12.3】 微分方程的解 若将函数y???x?代入微分方程使其变成恒等式 即 F?x,??x?,???x????n???x????0,
或者 ??n??x????x?,?,??n?1??x?? f?x,?x,?????则称y???x?为该方程的解.
根据y?y?x?是显函数还是隐函数 ,分别称之为显示解与隐式解.若解中含有任意常数,当独立的任意常数的个数正好与方程的阶数相等时该解叫做通解(或一般解);不含有任意常数的解叫特解.
【定义12.4】 定解条件 用来确定通解中任意常数的条件称为定解条件,最常见的定解条件是初始条件.
例
【例1
微分方程作业
P10习题
1.用Euler法和改进的Euler法求u’=-5u (0≤t≤1),u(0)=1的数值解,步长h=0.1,0.05;并比较两个算法的精度。
解:function du=Euler_fun1(t,u) du=-5*u;clear;
h=0.1;tend=1;N=1/h;t(1)=0;u(1)=1; t=h.*(0:N); for n=1:N
u(n+1)=u(n)+h*Euler_fun1(t(n),u(n)); end
plot(t,u,'*');hold on for n=1:N
v(1)=u(n)+h*Euler_fun1(t(n),u(n)); for k=1:6
v(k+1)=u(n)+h/2*(Euler_fun1(t(n),u(n))+Euler_fun1(t(n+1),v(k))); end
u(n+1)=v(k+1); end
plot(t,u,'o');
sol=dsolve('Du=-5*u','u(0)=1'); u_real=eval(sol); plot(t,u_real,'r');
将上述 h 换为0.05得:
由图像知道:
显然改进的Euler法要比Euler法
常微分方程在数学建模中的应用
微分方程应用
1 引言
常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具.
数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题.
因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介
通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型
裘布依微分方程
1.答:对于底坡i=0、 i>0条件下均质潜水含水层二维流,渗流宽度不变,而渗流厚度h沿流向变小。而根据渗流连续性原理,可知q=常量。
那么,由裘布依微分方程
q??Kh?H ?x
可知??H沿流向将变大,即水头线越来越弯曲,其形状H为一上凸的曲线。?x
由此,可知习题6-1图所示的水头线形状不正确,图中红色曲线为正确的水头线形状。
(a) (b)
习题6-1图
2.答:
(a)对于底坡i>0条件下均质潜水含水层二维流,渗流宽度不变,而渗流厚度h沿流向变小。而根据渗流连续性原理,可知q=常量。 那么,由裘布依微分方程
q??Kh?H ?x
可知?
?H沿流向将变大,即水头线越来越弯曲, 其形状为一上凸的曲线。?x
(a) (b)
习题6-2图
(b)对于底坡i>0条件下均质潜水含水层二维流,渗流宽度不变,而渗流厚度h沿流向不变。根据渗流连续性原理,可知q=常量。 那么,由裘布依微分方程
q??Kh?H ?x可知??H沿流向将不变,水头线H为一斜直线。?x
(c)对于底坡i>0条件下均质潜水含水层二维流,渗流宽度不变,而渗流厚度h沿流