指派问题建模
“指派问题建模”相关的资料有哪些?“指派问题建模”相关的范文有哪些?怎么写?下面是小编为您精心整理的“指派问题建模”相关范文大全或资料大全,欢迎大家分享。
指派问题详解
第一章 绪 论
1、指派问题的背景及意义
指派问题又称分配问题,其用途非常广泛,比如某公司指派n个人去做n件事,各人做不同的一件事,如何安排人员使得总费用最少?若考虑每个职工对工作的效率(如熟练程度等),怎样安排会使总效率达到最大?这些都是一个企业经营管理者必须考虑的问题,所以该问题有重要的应用价值.
虽然指派问题可以用0-1规划问题来解,设X(I,J)是0-1变量, 用X(I,J)=1表示第I个人做第J件事, X(I,J)=0表示第I个人不做第J件事. 设非负矩阵C(I,J)表示第I个人做第J件事的费用, 则问题可以写成LINGO程序
SETS: PERSON/1..N/; WORK/1..N/;
WEIGHT(PERSON, WORK): C, X ; ENDSETS DATA: W=… ENDDATA
MIN=@ SUM(WEIGHT: C*X);
@FOR(PERSON(I): @SUM(WORK(J):X(I,J))=1); @FOR(WORK(J): @SUM(PERSONM(I):X(I,J))=1); @FOR(WEIGHT: @BIN(X));
其中2*N个约束条件是线性相关的, 可以去掉任意一个而得到线性无关条件.
整数规划+指派问题
整数规划+指派问题
解:设 xij
1, 如果第i项由第j个人完成 0, 如果第i项未由第j个人完成
,用
f (x )
表示所花费的总时间,由题意
现有 A、B、C、D、E 共 5 个人,挑选其中
可得如下模型
的时间如表所示。规定每项工作只能由
m i n f ( x ) 1 0 x1 1 2 x1 2 3 x1 3 1 5 x1 4 9 x1 5 5 x 21 1 0 x 22 1 5 x 23 2 x 24 4 x 25 1 5 x31 5 x32 1 4 x33 7 x34 1 5 x35 2 0 x 41 1 5 x 42 1 3 x 43 6 x 44 8 x 45 x1 1 x1 2 x 21 x 22 x31 x32 x 41 x 42 x x 21 11 x1 2 x 2 2 x x 23 13 x1 4 x 2 4 x1 5 x 2 5 x 44 0 x ij 0 x1 3 x1 4 x1 5 1 x 23 x
指派问题的匈牙利解法
指派问题的匈牙利解法 1、
把各行元素分别减去本行元素的最小值;然后在此基础上
再把每列元素减去本列中的最小值。
15 12??0 3 0 11 8??4 8 7 ?????7 9 17 14 10??0 1 7 7 3??6 9 12 8 7???0 2 3 2 1?????10??0 0 5 0 4??6 7 14 6
?6 9 12 10 6??0 2 3 4 0?????此时每行及每列中肯定都有0元素了。 2、
确定独立零元素,并作标记。
(1)、首先逐行判断是否有含有独立0元素的行,如果有,则按行继续处理;如没有,则要逐列判断是否有含有独立0元素的列,若有,则按列继续处理。若既没有含有独立0元素的行,也没有含有独立0元素的列,则仍然按行继续处理。 (2)在按行处理时,若某行有独立0元素,把该0元素标记为a,把该0所在的列中的其余0元素标记为b;否则,暂时越过本行,处理后面的行。把所有含有独立0元素的行处理完毕后,再回来处理含有2个以及2个以上的0元素的行:任选一个0做a标记,再把该0所在行中的其余0元素及所在列中的其余0元
实验四 运输问题和指派问题
实验四 运输问题和指派问题 一、实验目的和要求
某农民承包了五块土地共206亩,打算种小麦、玉米和蔬菜三种农作物,各种农作物的计划播种面积(亩)以及每块土地种植各种不同农作物的亩产数量(公斤)见下表。问如何安排种植计划可使总产量达到最高?
二、实验过程和步骤
第一步:加载“规划求解工具”。 第二步:建立目标函数
土地块别 作物种类 小麦 玉米 蔬菜 1 2 3 4 5 计划播种面积 86 70 50 x11 x21 x12 x22 x13 x23 x33 44 x14 x24 x15 x25 x35 46 x31 36 x32 48 x34 32 土地亩数
本问题的目标函数是使得总产量达到最高,即:
Min z=500+600+650+1050+800+850+800+700+900+950+1000+950+850+550+700 (3)约束条件 ①满足土地亩数
土地块别1:x11?x21?x31?36;土地块别2:x12?x22?x32?48;土地块别3:土地块别4:x14?x24?x34?32;土地块别5:x15?x25?x35?46 x13?x23?x33?44;②满足计划播种面积
第五讲_分配问题(指派问题)与匈牙利法
第5讲 分配问题(指派问题)与匈牙利法
分配问题的提出
分配问题的提出若干项工作或任务需要若干个人去完成。由于每人的知识、
能力、经验的不同,故各人完成不同任务所需要的时间不同(或其他资源)。 问: 应指派哪个人完成何项工作,可使完成所有工作所消 耗的总资源最少?
分配问题的提出 设某公司准备派 n 个工人 x1,x2, …,xn 时间为cij (i,j=1,2,…,n)。 现问:如何确定一个分派工人去工作的方案,使 得工人们完成工作的总时间为最少。还比如:, 去作
n
件工作 y1,y2,…,yn。已知工人xi完成工作 yj 所需
n 台机床加工 n 项任务; n 条航线有 n 艘船去航行等。
整体解题思路总结例题:单位:小时
工作1 工作2 工作3 工作4 工作5
工作者 工作者 工作者 工作者 工作者 1 2 3 4 5 4 8 7 15 12 7 9 17 14 10 6 9 12 8 7 6 7 14 6 10 6 9 12 10 6
标准形式的分配问题
标准形式的分配问题 设某公司准备派 n 个工人 x1, x2, …, xn(i,j=1,2,…,n)。 现问:如何确定一个分派工人去工作的方案,使得工人们 完成工作的总时间为最少。, 去作
n 件工作
y1
浅析指派问题的匈牙利解法成稿
洛阳师范学院本科毕业论文
浅析指派问题的匈牙利解法
胡小芹
数学科学学院 数学与应用数学 学号:040414057
指导教师:苏孟龙
摘要:对于指派问题,可以利用许多理论进行建模并加以解决,但匈牙利解法是解决指派问题的一种非常简单有效的方法,并且可以解决多种形式的指派问题,但匈牙利算法本身存在着一些问题,本文主要介绍了匈牙利算法的基本思想,基本步骤,以及它的改进方法.在匈牙利算法的基础上,本文还介绍了两种更简便实用的寻找独立零元素的方法——最小零元素消耗法和对角线法.
关键词:指派问题;匈牙利解法;最小零元素消耗法;对角线法 0 引言
在现实生活中经常会遇到把几个任务分派给几个不同的对象去完成,由于每个对象的条件不同,完成任务的效率和效益亦不同.指派问题的目标就是如何分派使所消耗的总资源最少(或总效益最优),如给工人分派工作,给车辆分配道路,给工人分配机床等等,同时许多网络问题(如旅行问题,任务分配问题,运输问题等),都可以演化成指派问题来解决.在现实生活中,指派问题是十分常见的问题,而匈牙利解法是解决指派问题的一种非常简单有效的方法.本文主要介绍匈牙利解法的基本原理及思想,解题步骤,不足与改进,以使匈牙利法更能有效地解决指派问题
数学建模旅游问题
摘要
随着人们生活水平的不断提高,作为“无烟工业”旅游活动便成为人们生活水平的重要指标。本文围绕五一黄金周的旅游问题进行了定量的评估,对即有时间限制又有时间限制的旅游质量问题建立了数学模型,对求解结果进行了分析。
问题要求在只有1000元的旅游费用且在7天之内的条件下游览尽可能多的城市。首先,我们对预选的旅游景点之间消耗的费用和时间进行了分析。由于约束条件不仅要求费用不大于1000而且旅游时间在7天之内,因此,我们从长途汽车站和火车车次中选取费用最低且最节约时间的路线并记录了最优行程费用表。另外,由于时间的限制,因此,需引入0-1变量表示是否游览某个景点,根据求解最优Hamilton回路算法——三边交换调整法,以费用和时间为参考量,我们建立了一个适用于本问题最优规划模型,得出最优旅游路线①→⑥→⑤→④→③→⑧→⑩→①。
关键词:三边交换调整法 最优旅游路线 Matlab程序 0—1模型
1
问题重述
旅游路线安排计划
黄金周又到了,希望安排出外旅游。你要考虑的因素很多。首先,你得考虑时间有限(7天);其次要考虑费用问题:根据有限的费用安排你的交通方式。当然,还要考虑出游的乐趣,希望多走几个景点。还要考虑劳逸结合,如较远的地方如坐
数学建模 运输问题 送货问题
数学建模论文
题 目: 送货问题 学院(直属系 数学与计算机学院 年级、 专业: 2010级信息与计算科学 姓 名:杨尚安 指 导 教 师: 蒲 俊 完 成 时 间: 2012年 3 月 20 日
摘要
本文讨论的是货运公司的运输问题,根据各公司需求和运输路线图,建立了线性规划模型和0-1规划模型,对货运公司的出车安排进行了分析和优化,得出运费最小的调度方案。
对于问题一,由于车辆在途中不能掉头,出车成本固定,要使得总成本最小,即要使在一定的车辆数下,既满足各公司的需求,又要尽量减小出车次数。故以最小出车数为目标函数,建立线性规划模型,并通过lingo求解,得出最小出车数27次。接着考虑车的方向问题,出车分为顺时针和逆时针,建立0-1模型,并求解,得出满足问题一的调度方案(见附录表1)。
对于问题二,车辆允许掉头,加上车辆装载货物和空装时运输费不同,,要使总成本最小,故可以通过修改原目标函数,建立线性规划模型和0-1规划模型,求解,
数学建模 救援问题
湖南第一师范学院
HUNAN FIRST NORMAL UNIVERSITY
《线性规划与数学建模》
考查论文
论文题目: 紧急救援问题
组员1 组员2
姓 名 专业班级 及学号 数学班05号 分工 成绩评定 13级624分析问题、模型的陈淑月 建立及求解、撰写论文 建立及求解、撰写论文 13级624分析问题、模型的向云 数学班40号 摘要
本文研究在一定时间内运送医务人员到指定地点的优化设计问题。分析问题可将本文中的三个问题划分为三个阶段,并利用逐渐优化的模型进行求解。
第一个问题是在指定时间内完成人员的运送问题,通过分析,运用简单的计算方法就能马上得出结果:按此方案,时间超过三小时,因此他们不能按时到达。
然后针对问题二,由于题目中已给出部分条件,问题二则变成了追及和相遇问题,解决这类问题常采用分段求解法。我们通过对相遇和追及问题及其过程进行分析,得出这种方案能够使全部医护人员按时到达村庄。
针对问题三,文中详细讨论了运送医务人员的策略和方法,并进一步在问题上要求建立一个优化模型,以优化其策略,并且对其求解。在优化模型时需要采用不同于前一二题的思维方式,在改变思维方式后,会使问题变得更加清晰。我们可以
数学建模:投资问题
投资的收益与风险问题
摘要
对市场上的多种风险资产和一种无风险资产(存银行)进行组合投资策略的设计需要考虑两个目标:总体收益尽可能大和总体风险尽可能小,而这两个目标在一定意义上是对立的。
本文我们建立了投资收益与风险的双目标优化模型,并通过“最大化策略”,即控制风险使收益最大,将原模型简化为单目标的线性规划模型一;在保证一定收益水平下,以风险最小为目标,将原模型简化为了极小极大规划模型二;以及引入收益——风险偏好系数,将两目标加权,化原模型为单目标非线性模型模型三。然后分别使用Matlab的内部函数linprog,fminmax,fmincon对不同的风险水平,收益水平,以及偏好系数求解三个模型。 关键词:组合投资,两目标优化模型,风险偏好
2.问题重述与分析
3.市场上有种资产(如股票、债券、?)()供投资者选择,某公司有数额为的一笔相当大的资金可用作一个时期的投资。公司财务分析人员对这种资产进行了评估,估算出在这一时期内购买的平均收益率为,并预测出购买的风险损失率为。考虑到投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险可用所投资的中最大的一个风险来度量。
购买要付交易费,费率为,并且当购买额不超过给定值时,交易