相似三角形的中考题以及答案
“相似三角形的中考题以及答案”相关的资料有哪些?“相似三角形的中考题以及答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“相似三角形的中考题以及答案”相关范文大全或资料大全,欢迎大家分享。
全等三角形中考题
第十一章 全等三角形
11.1 全等三角形
1.(2008年仙桃、潜江)△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是 .
2.(2007年泰安)如图,△ABE和△ACD是△ABC分别沿着AB,AC边翻折180 形成的,若
BAC 150,则 的度数是 .
E
D
B
11.2 三角形全等的条件(1)
1.(2008年宜宾市)已知:如图,AD=BC,AC=BD.求证:∠C=∠D
C
DA
11.2 三角形全等的条件(2)
1.(2008年遵义市)如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ) A.60° B.50° C.45° D.30°
O
D
A C
2.(2008常州市) 已知:如图,AB=AD,AC=AE,∠BAD=∠CAE. 求证:AC=DE.
A
B
D
E
3.(2007年南昌市)如图,在△ABC中,D是AB上一点,DF交AC于点E,DE=FE,AE=CE,AB与CF有什么位置关系?证明你的结论.
A
F
E
B
4.(2008年泰安市)两个大小不同的等腰直角三
全等三角形证明中考题精选(有答案)
新人教版八年级上学期全等三角形证明题
一.解答题(共10小题) 1.(2013?泉州)如图,已知AD是△ABC的中线,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:BE=CF.
2.(2013?河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°. (1)操作发现
如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空: ①线段DE与AC的位置关系是 _________ ;
②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是 _________ .
(2)猜想论证
当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想. (3)拓展探究
已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.
3.(2013?大庆)如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转
三角形、等腰三角形以及全等三角形的证明
儒洋教育学科教师辅导讲义
学员姓名: 年 级: 课时数: 辅导科目: 学科教师: 课 题 授课时间: 教学目标 重点、难点 考点及考试要求 教学内容 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段:
(1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质
(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180°
(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。
4. 补充性质:在?ABC中,D是BC边上任意一点,E是AD上任意一点,则三角形、等腰三角形以及全等三角形的证明 备课时间: S?ABE?S?CDE?S
相似三角形的性质
篇一:相似三角形的定义与性质
同学个性化教学设计
年 级: 九年级教 师: 张永慧科 目:数学 班 主 任: 朱敏_ 日 期: _时 段: ___
1 海到无边天作岸,山高绝顶我为峰
校长签字: ___________日期3 海到无边天作岸,山高绝顶我为峰
篇二:相似三角形性质
精锐教育学科辅导讲义
篇三:相似三角形的性质 导学案
《相似三角形的性质》 学案
【学习目标】
知识与技能:理解并运用相似三角形的性质,灵活运用相似三角形的性质解题。 过程与方法:经历探索相似三角形性质的过程,发展逻辑思维能力和应用能力。 情感与价值观:感受数学学习中的推理过程,积极参与推理活动。
【温故知新】
1、相似三角形的判定方法有哪一些?
2、如图,在△ABC中,DE∥BC,若AD:DB=1:3,则△ADE 与△ABC的相似比为 。 3、已知:△ABC△∽ABC,AB=2cm,BC=3cm,AB=4cm, AC=2cm,则AC= cm, BC=cm。
''
''
'''
''
B
【学习过程】
1、自主学习:两个相似三角形,除了对应边成比例、对应角相等之外,还可以得到许多有用的结论.
例如,如图:△ABC和△A′B
相似三角形说课稿
《相似三角形》说课稿
各位领导、老师下午好!
今天我说的内容是:人教版九年级数学下册《相似三角形》
我将从教材分析、学情分析、教学模式、教学设计、板书设计、课堂评价6个方面来对本课进行说明 一、 说教材
1、教材所处的地位和作用
《相似三角形》是义务教育数学课程标准实验教材。相似三角形的知识是在全等三角形的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。同时对后续教学内容起奠基作用,也为学生今后学习和生活更好的运用数学做准备。 2、教学目标
(1)知识目标 探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;
(2)能力目标 通过教学渗透类比的思想方法,培养学生探究新知识的能力及运用所学知识解决实际问题的能力。
(3)情感目标: 让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。
3、教学重点、难点:
本课重点是深入理解认识相似三角形的概念 难点是 ①相似三角形性质的应用;
②促进学生有条理的思
相似三角形教案
相似三角形教案
一、教学目标
知识与技能
1. 理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。
2. 能用相似三角形周长的比等于相似比、面积比等于相似比的平方来解决简单的问题。
过程与方法
1. 经历探索相似三角形性质的过程,并在探究过程中发展学生积极的情感、态度、价值观,体验解决问题策略的多样性。
2.在探索实践中培养学生分析问题、解决问题的能力。
情感态度与价值观
1. 在获得知识的过程中培养学习的自信心 ,知道数学来源于生活有服务于生活。
2. 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.
二、重点难点
重点
理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。
难
点
相似三角形性质的灵活运用,及对“相似三角形面积的比等于相似比的平方”性质的理解,特别是对它的反向应用的理解,即对“由面积比求相似比”的理解.
三、学情分析
相似三角形的周长与面积在初中数学和中考中占有重要的位置,同时,在日常生活生产中也有广泛的应用,因此这是一节很重要的课题。学生已学习相似形的性质和判定,以及全等三角形的有关知识,在此基础上研究本节课,学生应感到并不困难。
四、教学过程设计
教学知: ABC∽ A’B’C’,根据相似的定义,我们有哪些结论?
2、
相似三角形的比例关系及相似三角形证明的变式
相似三角形的比例关系及相似三角形证明的变式
【知识疏理】
一, 相似三角形边长比,和周长比以及面积比的关系!
若两个相似三角形的对应角的平分线之比是1∶2,则这两个三角形的对应高线之比是---------,对应中线之比是------------,周长之比是---------,面积之比是-------------,若两个相似三角形的面积之比是1∶2,则这两个三角形的对应的角平分线之比是----------,对应边上的高线之比是-------- 对应边上的中线之比是----------,周长之比是--------------。
A A'
B'C'CB
图(4)图1
二, 相似三角形证明的变式
1,相似三角形当中常以乘积的形式出现,如:
例1、 已知:如图1,BE、DC交于点A,∠E=∠C。求证:DA·AC=BA·AE
E D
A
CB
图2
题目比较简单,学生独立完成,启发学生总结:①本题找对应角的特殊方法是对顶角相等;②要想证明乘积式或比例式,应先证明三角形相似。
2,对特殊图形的认识
例2、已知:如图3,Rt△ABC中,∠ABC=90o,BD⊥AC于点D。 AD
BC
图3
(1) 图中有几个直角三角形?它们相似吗?为什么
中考相似三角形经典题集锦
1、若
x24x?3y=______; ?,则
y32x?y2、若x:y:z?2:3:5,x?y?z?50,则2x?y?z? 。
3、如果点P是线段AB的黄金分割点,且AP>PB,则下列命题,①AB2?AP?PB,②BP2?AP?AB,③AP2=PB·AB,④AP:AB?PB:AP,其中正确的是 (填序号)。
4、两个相似三角形的一对对应边分别为20cm,8cm,他们的周长相差60cm ,则这两个三角形的周长为_______________, _______________.
o
5、如右图,△ABC中∠ACB=90,CD⊥AB于D。 则图中能够相似的三角形共有( )
A.1对 B.2对 C.3对 D.4对
6. 如图,D是△ABC的边AB上的一点,过点D作DE∥BC交AC于E,若AD:BD = 4:3,
则S△ADE:S四边形 BCED=______________. A D
7、如图,在梯形ABCD中,AD∥BC,AC、BD交于O点,
S?AOD:S?COB?1:9,则S?DOC:S?BOC=
B
O C
第7题
8、如图,矩形EFGH内接于△ABC
中考相似三角形经典题集锦
1、若
x24x?3y=______; ?,则
y32x?y2、若x:y:z?2:3:5,x?y?z?50,则2x?y?z? 。
3、如果点P是线段AB的黄金分割点,且AP>PB,则下列命题,①AB2?AP?PB,②BP2?AP?AB,③AP2=PB·AB,④AP:AB?PB:AP,其中正确的是 (填序号)。
4、两个相似三角形的一对对应边分别为20cm,8cm,他们的周长相差60cm ,则这两个三角形的周长为_______________, _______________.
o
5、如右图,△ABC中∠ACB=90,CD⊥AB于D。 则图中能够相似的三角形共有( )
A.1对 B.2对 C.3对 D.4对
6. 如图,D是△ABC的边AB上的一点,过点D作DE∥BC交AC于E,若AD:BD = 4:3,
则S△ADE:S四边形 BCED=______________. A D
7、如图,在梯形ABCD中,AD∥BC,AC、BD交于O点,
S?AOD:S?COB?1:9,则S?DOC:S?BOC=
B
O C
第7题
8、如图,矩形EFGH内接于△ABC
相似三角形题型总结
一.解答题(共21小题)
1.如图,正方形ABCD中,F为AB上一点,E是BC延长线上一点,且AF=EC,连接EF,DE,DF,M是FE中点,连接MC,设FE与DC相交于点N. (1)在以下结论①∠FDB=∠FEB;②MC垂直平分BD;③△DFN∽△EBD中正确的有 _________ ,请选择一个你认为正确的结论进行证明.
(2)若MC=,求BF的长.
2.(2011?聊城)如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G
2
重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm) (1)当t=1秒时,S的值是多少?
(2)写出S和t之间的函数解析式,并指出自变量t的取值范围;
(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.
3.(2010?崇川区模拟)用一副三角板拼成如图①所示的四边形ABCD,其中∠ADC=∠ACB=90°,∠B=60°,AD=DC=cm.若把△ADC的顶点C