归纳思想方法

“归纳思想方法”相关的资料有哪些?“归纳思想方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“归纳思想方法”相关范文大全或资料大全,欢迎大家分享。

论文:数学思想方法

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

数学思想方法

河南省虞城县李老家乡第二初级中学;高华增

数学思想方法一般是指人们在数学的发生、形成、发展过程中总结概括出来的数学规律的本质认识,是利用数学知识去解决问题的思维策略和指导思想,它为数学知识的学习和运用提供了方向,是解决数学问题的“向导”,数学思想的产生并作用于数学学习的整个过程中,尤其是在解决复杂的综合题时,数学思想的合理运用起着关键性的决定作用,数学思想方法是数学思想的具体体现,不仅是学习和运用数学知识的解决数学问题应具备的、最基本的思想方法.而且是新课标改革的方向和中考试题解题特征

常见的数学思想方法有:化归思想方法、数形结合思想方法、分类讨论思想方法、数学建模思想方法、方程思想方法、函数思想方法、整体思想方法,对此类问题的突破,方法具体如下:

类型一:化归思想方法: 重难点突破:解决问题的基本思想就是化

未知为已知,把复杂的问题简单化,把生疏的问题熟悉化,把实际问题数学化,不同的数学问题相互转化,也体现了把不易解决的问题转化为有章可循,容易解决的问题的思想

【例1】 如下图中每个阴影部分是以多边形各顶点为圆心,1为半径

的扇形,并且所有多边形的每条边都大于2,则第n个多边形中,所有扇形面积之和是______.(结果保留π)

高中数学解题思想方法(数学归纳法)

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

五、数学归纳法

数学归纳法是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n0)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是递推的依据。实际上它使命题的正确性突破了有限,达到无限。证明时,关键是k+1步的推证,要有目标意识。

Ⅰ、再现性题组: 1. 用数学归纳法证明(n+1)(n+2)…(n+n)=2·1·2…(2n-1) (n∈N),从“k到k+1”,左端需乘的代数式为_____。

A. 2k+1 B. 2(2k+1) C. 2. 用数学归纳法证明1+

n2k?1 D. 2k?3 k?1k?11+1+…+11)时,由n=k (k>1)不等式成立,推证n=k+1

232n?1kkk时,左边应增加的代数式的个数是_____。

A. 2 B. 2-1 C. 2 D. 2+1

3. 某个命题与自然数n有关,若n=k (k∈N)时该命题成立,那么可推得n=k+1时该命题也成立。现已知当n=5时该命题不成立,那么可推得______。 (94年上海高考)

A.当n=6时该命题不成立

小学数学思想方法

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

小学毕业生数学学习材料(二)

小学数学思想方法

小学数学是一门基础学科。小学数学中不仅包括了大量的数学基础知识,而且在学习和运用这些数学知识的过程中,还以潜移默化的方式渗透了一些重要的数学思想方法。本讲义从较高的视点出发,对已有的关于数学思想方法零散而模糊的感性认识,进行科学地、系统地概括,结合一些经过精选的数学竞赛题目,进行深入细致的讲解,并且安排了必要的和适量的练习,力求通过学习,对一些常用的数学思想方法和技巧能够明确认识,融会贯通,以提高数学思维能力和解题能力,为更好地为适应初中数学的学习打下良好的基础。

第一讲 从简单情况找规律

当一个问题非常复杂时,首先就要想到,其中是否隐藏着某种规律,如果能找到这种规律,问题就会迎刃而解。探索规律,往往要利用已有的知识和经验,从简单的、熟悉的地方开始,从粗略的估计开始,同时注意极端的情况,如最大、最小等。

例1 1995个7连乘,积的个位数字是多少?(北京市“迎春杯”数学竞赛题)

解:71=7,个位数字是7;72=49,积的个位数字是9;73=343,积的个位数字是3;74=2401,积的个位数字是1;75=16807,积的个位数字是7。 观察发现,随着因数的增加,积的个位数字按“7

小学数学思想方法有哪些

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

小学数学思想方法有哪些?

《课标》(修订稿)把“双基”改变“四基”,即改为关于数学的:基础知识、基本技能、基本思想、基本活动经验.

“基本思想”主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想. 演绎和归纳不是矛盾的,其教学也不是矛盾的,通过归纳来预测结果,然后通过演绎来验证结果.在具体的问题中,会涉及到数学抽象、数学模型、等量替换、数形结合等数学思想, 但最上位的思想还是演绎和归纳.之所以用“基本思想”而不用基本思想方法,就是要与换元法、递归法、配方法等具体的数学方法区别.每一个具体的方法可能是重要的,但它们是个案,不具有一般性.作为一种思想来掌握是不必要的,经过一段时间,学生很可能就忘却了.这里所说的思想,是大的思想,是希望学生领会之后能够终生受益的那种思想方法.

史宁中教授认为:演绎推理的主要功能在于验证结论,而不在于发现结论.我们缺少的是根据情况“预测结果”的能力;根据结果“探究成因”的能力.而这正是归纳推理的能力.

就方法而言,归纳推理十分庞杂,枚举法、归纳法、类比法、统计推断、因果分析,以及观察实验、比较分类、综合分析等均可被包容.与演绎推理相反,归纳推理是一种“从特殊到一般的推理”.

借助归纳推理可以培养学生“预测结果”和“

微积分与数学思想方法

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

数学思想方法的解释有多种多样,其中胡炯涛《数学教学论》广西教育出版社,一书中指出数学思想方法则是数学知识发生过程中的提炼、抽象、概括和升华,是对数学规律更一般的认识,它蕴藏在数学知识之中,需要学习者去挖掘[6]。数学思想方法分为两部分,一是数学思想,二是数学方法,其中数学思想是指我们对教材中理论知识及内容最本质的认识,而数学方法是数学思想的具体化形式,运用到实际的题目中[20]。下面就具体来阐述一下微积分习题中的数学思想方法: 5.1函数思想

函数思想是我们在中学阶段中常见的一种思想方法,是指用函数的概念、性质、特点去分析问题、转化问题和解决问题的一种思维,函数思想是一个基本的数学思想,方程,不等式问题可以在函数的观点下统一起来,数列是特殊的函数,集合论的知识作为建立函数的基础,也包括在其中[11]。在新版教材微积分的内容中,函数思想更为重要,其中一部分题目就是借助“微积分”这个工具,最后还是依据函数的基本性质去解决问题。例如:

一条长为l的铁丝截成两段,分别弯成两个正方形,要使两个正方形的面积和最小,两段铁丝的长度分别是多少?[12](新版教材人教A版选修2–2课本37页习题)

解:设其中一段铁丝的长度为x,则另一段为l?x,面积为s

小学数学思想方法的梳理

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

小学数学思想方法的梳理(一) 王永春(课程教材研究所)

数学思想和数学方法既有区别又有密切联系。数学思想的理论和抽象程度要高一些,而数学方法的实践性更强一些。人们实现数学思想往往要靠一定的数学方法;而人们选择数学方法,又要以一定的数学思想为依据。因此,二者是有密切联系的。我们把二者合称为数学思想方法。数学思想方法是数学的灵魂,那么,要想学好数学、用好数学,就要深入到数学的“灵魂深处”。

《数学课程标准》在总体目标中明确提出:“学生能获得适应未来的社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能。”这一总体目标贯穿于小学和初中,这充分说明了数学思想方法的重要性。在小学阶段有意识地向学生渗透一些基本的数学思想方法可以加深学生对数学概念、公式、法则、定律的理解,提高学生解决问题的能力和思维能力,也是小学数学进行素质教育的真正内涵之所在。同时,也能为初中数学思想方法的学习打下较好的基础。在小学阶段,数学思想方法主要有符号化思想、化归思想、类比思想、归纳思想、分类思想、方程思想、集合思想、函数思想、一一对应思想、模型思想、数性结合思想、演绎推理思想、变换思想、统计与概率思想等等。

为了使广大小学数学教师在教学中能很好地渗透

小学数学思想方法有哪些

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

小学数学思想方法有哪些?

《课标》(修订稿)把“双基”改变“四基”,即改为关于数学的:基础知识、基本技能、基本思想、基本活动经验.

“基本思想”主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想. 演绎和归纳不是矛盾的,其教学也不是矛盾的,通过归纳来预测结果,然后通过演绎来验证结果.在具体的问题中,会涉及到数学抽象、数学模型、等量替换、数形结合等数学思想, 但最上位的思想还是演绎和归纳.之所以用“基本思想”而不用基本思想方法,就是要与换元法、递归法、配方法等具体的数学方法区别.每一个具体的方法可能是重要的,但它们是个案,不具有一般性.作为一种思想来掌握是不必要的,经过一段时间,学生很可能就忘却了.这里所说的思想,是大的思想,是希望学生领会之后能够终生受益的那种思想方法.

史宁中教授认为:演绎推理的主要功能在于验证结论,而不在于发现结论.我们缺少的是根据情况“预测结果”的能力;根据结果“探究成因”的能力.而这正是归纳推理的能力.

就方法而言,归纳推理十分庞杂,枚举法、归纳法、类比法、统计推断、因果分析,以及观察实验、比较分类、综合分析等均可被包容.与演绎推理相反,归纳推理是一种“从特殊到一般的推理”.

借助归纳推理可以培养学生“预测结果”和“

浅谈如何渗透数学思想方法

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

浅谈“如何在教学中渗透数学思想”

新课标明确指出:“通过义务教育阶段的数学学习,学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法”。美国教育心理家布鲁纳也曾指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。所谓数学思想方法是对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,他在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想;是在数学地提出问题、解决问题(包括数学内部问题和实际问题)过程中,所采用的各种方式、手段、途径等.常言道:“授人以鱼,不如授人以渔,受人以鱼只救一时之急,授人以渔则可解一生之需。”生活中,最有用的不仅是数学知识,更重要的是数学的思想方法和数学的意识,因此数学的思想方法是数学的灵魂和精髓。掌握科学的数学思想方法对提升学生的思维品质,对数学学科的后继学习,对其它学科的学习,乃至对学生的终身发展都具有十分重要的意义。

下面我就从课前、课上、课中、课后四个方面谈一下我在数学教学中渗透数学思想方法的一些浅薄的做法:

一、课前渗透

俗话说:“凡事预则立,不预则废”。如果课前

数学思想方法综合练习(1)

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

《数学思想方法》综合练习

一、填空题

1.《九章算术》思想方法的特点是开放的归纳体系算法化的内容模型化的方法。

2.古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以《九章算术》为典范。-----+

3.在数学中建立公理体系最早的是几何学,而这方面的代表著作是古希腊欧几里得的《几何原本》。

4.《几何原本》所开创的公理化方法不仅成为一种数学陈述模式,而且还被移植到其它学科,并且促进他们的发展。

5.推动数学发展的原因主要有两个:①实践的需要,②理论的需要;数学思想方法的几次突破就是这两种需要的结果。

6.变量数学产生的数学基础是解析几何,标志是微积分。

7.数学基础知识和数学思想方法是数学教学的两条主线。

8.随机现象的特点是在一定条件下,可能发生某种结果,也可能不发生某种结果。

9.等腰三角形的抽象过程,就是把一个新的特征:两边相等,加入到三角形概念中去,使三角形概念得到强化。

10.学生理解或掌握数学思想方法的过程有如下三个主要阶段、①潜意识阶段,②明朗化阶段,③深刻理解阶段。

11.数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现,它表现为数学的各个分支相互渗透和相互结合的趋势。

12

小学数学思想方法的梳理(七)

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

小学数学思想方法的梳理(七)

七、分类讨论思想

1.分类讨论思想的概念。 人们面对比较复杂的问题,有时无法通过统一研究或者整体研究解决,需要把研究的对象按照一定的标准进行分类并逐类进行讨论,再把每一类的结论综合,使问题得到解决,这种解决问题的思想方法就是分类讨论的思想方法。其实质是把问题“分而治之、各个击破、综合归纳”。其分类规则和解题步骤是:(1)根据研究的需要确定同一分类标准;(2)恰当地对研究对象进行分类,分类后的所有子项之间既不能“交叉”也不能“从属”,而且所有子项的外延之和必须与被分类的对象的外延相等,通俗的说就是要做到“既不重复又不遗漏”;(3)逐类逐级进行讨论;(4)综合概括、归纳得出最后结论。

分类讨论既是解决问题的一般的思想方法,适应于各种科学的研究;同时也是数学领域问题较常用的思想方法。

2.分类讨论思想的重要意义。 《课程标准》在总目标中要求学生能够有条理地思考,这种有条理性的思考就是一种有顺序的、有层次的、全面的、有逻辑性的思考,分类讨论就是具有这些特殊的思考方法。因此,分类讨论思想是培养学生有条理地思考和良好数学思维品质的一种重要而有效的方法。无论是解决纯数学问题,还是解决联系实际的问题,都要注意数学原理、公式和方法