二次函数的定义教学反思
“二次函数的定义教学反思”相关的资料有哪些?“二次函数的定义教学反思”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二次函数的定义教学反思”相关范文大全或资料大全,欢迎大家分享。
《二次函数的应用》教学反思
《二次函数的应用》教学反思
《二次函数的应用教学反思》教学反思
二次函数的应用是在学习二次函数的图像与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查,它是本章的难点。新的课程标准要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图像的性质解决简单的实际问题,而最大值问题是生活中利用二次函数知识解决最常见、最有实际应用价值的问题,它生活背景丰富,学生比较感兴趣。本节课通过学习求水流的最高点问题,引导学生将实际问题转化为数学模型,利用数学建模的思想去解决和函数有关的应用问题。此部分内容是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的基础。
由于本节课是二次函数的应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,以学生动手动脑探究为主,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。
不足之处:《数学课程标准》提出:教师不仅是学生的引导者,也是学生的合作者。教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习探讨。在本节课的教学中,教师引导学
二次函数的应用教学反思
篇一:《二次函数与一次函数的综合应用》教学反思
《二次函数与一次函数的综合应用》教学反思
著名教育家叶澜教授说:“一个教师写一辈子教案不一定成为名师,如果一个教师写三年教学反思可能成为名师”。这句话的用意就是让我们重视写教学反思。写反思有利于教师不断总结教学经验和不足,完善自我,提高教学水平,不断改变教学方法,提高课堂教学效率。
下面就我在讲《二次函数与一次函数的综合应用》一节课,做一教学反思。
函数是描述现实世界中变化规律的数学模型。而二次函数在初中数学中占有重要的地位,同时也是高中数学学习的基础,作为初、高中数学衔接的内容,二次函数在中考命题中一直是“重头戏”,二次函数和一次函数的综合应用就成了中考的热点。这节课的教学重点是二次函数的性质和一次函数的性质的灵活运用;难点是怎样建立二次函数和一次函数的关系。
教学目的及过程:
首先复习了二次函数和一次函数的有关基础知识,二次函数的定义、开口方向、对称轴、顶点坐标及函数的增减性。一次函数的定义、图像及函数的增减性。采用特值法的形式检验学生的基础知识掌握情况,采取这样的方法学生易懂。
由于本节课是二次函数与一次函数的综合应用问题,重在通过学习总结解决问题的方法,以“启发探究式”为主线开展教学活动。以
篇二:《2
初中数学《二次函数的概念》的教学反思.doc
初中数学《二次函数的概念》教学反思
本文是我为大家整理的初中数学《二次函数的概念》教学反思,希望对大家有所帮助。
"课内比教学"是教育本质的回归,是提高教师专业素质、促进教师专业成长的重要途径。在此次活动中,我主讲的课题是《二次函数的概念》。通过讲课、评课,我收获颇多。
二次函数是初中阶段研究的最后一个具体的、重要的函数,在历年来的中考中题中都占有较大的分值。二次函数不仅和学生以前学过的一元二次方程有着密切的联系,而且对培养学生"数形结合"的数学思想具有重要作用。而二次函数的概念是以后学习二次函数的基础,在整个教材体系中起着承上启下的作用。
本节课的具体内容是让学生理解二次函数的概念,会判断一个函数是否是二次函数,并能够用二次函数的一般形式解决一些问题。为此,我先带领学生复习了什么是一次函数,然后设计具体的问题情境让学生自己"推导" 出一个二次函数,并观察、总结它与一次函数有什么不同。在此基础上,逐步归纳出二次函数的一般解析式:y=ax²+bx+c(a,b,c是常数,a≠ 0)。最后,通过"一题多练"巩固二次函数的概念并解决一些简单的数学问题。
我个人以为,本节课的成功之处有以下几点:
一是在教学设计上"步步为营"、学生的思维能力"层层提
《二次函数》教学案例
二次函数教学案例
教学目标:
1、继续巩固用描点法画出二次函数y=ax2的图像,并能通过图像认识二次函数y=ax2的性质;
222y?ax?ky?a(x?h)y?a(x?h)?k这几类函数图像,并通2、会画、、
过几何画板演示得出平移规律;
2y?a(x?h)?k,并总结概括出3、在探索过程中学会二次函数的顶点式
二次函数顶点式的 性质;
4、利用计算机制作动画,让学观察抛物线的形成过程,培养学生以运动变化的观点来观察问题、分析问题、解决问题的意识; 5、在经历“观察、猜测 、探索 、验证 、应用”的过程中,渗透从“形”到“数”和从“数”到“形”的转化,培养了学生的转化、迁移能力,实现感性到理性的升华。
2y?a(x?h)?k的性质。 教学重点:二次函数的顶点式
教学难点:通过研究y?ax2、y?ax2?k、y?a(x?h)2、y?a(x?h)2?k这几
类函数图像,得出平移规律,并总结概括出二次函数的性质。
教具准备:计算机、几何画板工具,PPT课件、导学案 教学过程:
【课件展示】二次函数y=2x2的图像是什么呢?请画出图像,并根据图
像说出二次函数的性质。
学生:在导学案的这个提问下方画函数y
《二次函数的图像(1)》教学设计
《二次函数的图像(1)》教学设计
教学目标:
1、经历描点法画函数图像的过程;
2、学会观察、归纳、概括函数图像的特征; 3、掌握y?ax2型二次函数图像的特征;
4、经历从特殊到一般的认识过程,学会合情推理。 教学重点:
y?ax2型二次函数图像的描绘和图像特征的归纳
教学难点:
选择适当的自变量的值和相应的函数值来画函数图像,该过程较为复杂。 教学设计: 一、回顾知识
前面我们在学习正比例函数、一次函数和反比例函数时时如何进一步研究这些函数的?先(用描点法画出函数的图像,再结合图像研究性质。)
引入:我们仿照前面研究函数的方法来研究二次函数,先从最特殊的形式即
y?ax2入手。因此本节课要讨论二次函数y?ax2(a?0)的图像。
板书课题:二次函数y?ax2(a?0)图像 二、探索图像 1、
用描点法画出二次函数y?x2和y??x2图像
1-2 ?1 -1 212 1 4 41-4 -2 -1 4(1) 列表 x … … ?1 21 41 40 0 0 y?x2 1 212 41 1 -1 y??x2 … --1 411 212 4-12 42 4 -4 … … … 引导学生观察上表,思考一下问题: ①无论x取何值,对于y?x2来说,y的值
二次函数的应用
1.抛物线y=﹣x+bx+c的部分图象如图所示,要使y>0,则x的取值范围是( )
2
A.﹣4<x<1 B.﹣3<x<1 C.x<﹣4或x>1 D.x<﹣3或x>1
2.如果将二次函数y=2x的图象沿y轴向下平移1个单位,再向右平移3个单位,那么所得图象的函数解析式是___
3.如图,抛物线y1=-x+2向右平移1个单位得到的抛物线y2.回答下列问题:
22
(1)抛物线y2的解析式是_____,顶点坐标为_____; (2)阴影部分的面积_____;
(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,则抛物线y3的解析式为_____,开口方向_____,顶点坐标为_____.
4.如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)请直接写出D点的坐标. (2)求二次函数的解析式.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.
二次函数的应用——求周长面积问题
1.已知:如图,二次函数的图象与x轴交于A(-2,0),B(4,0)两点,且函数的最大值为9.
(1)求二次函
二次函数主题单元教学设计
表3-1 主题单元教学设计模板
主题单元规划思维导图
主题单元学习目标(说明:依据新课程标准要求描述学生在本主题单元学习中所要达到的主要目标)
知识与技能:能用表格、表达式、图像表示变量之间的二次函数关系,发展有条理的思考能力和语言表达能力,能根据具体问题,选取适当的方法表示变量之间的二次函数关系。会做二次函数的图像,并能根据图像对二次函数的性质进行分析,逐步积累研究函数性质的经验。能根据二次函数的表达式确定二次函数图形的开口方向、对称轴和定点坐标。能根据已知条件确定二次函数的表达式。能利用二次函数解决实际问题,能对变量的变化趋势进行预测。
过程与方法:经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描叙变量之间的数量关系。理解一元二次方程与二次函数的关系,并能利用二次函数的图像求一元二次方程的近似根。
活动3:练习
抛物线y=x2 -8x+c的顶点在x轴上,则c等于( ) A.-16 B.-4 C.8
例2、(2009年孝感)已知抛物线(k为常数,且k>0).(1)证明:此抛
物线与x轴总有两个交点;例3、(2009年娄底)已知关于x的二次函数
y=x2-(2m-1)x+m2+3m+4.(1)探究m满足什
《二次函数的概念》微课教学设计
二次函数的概念微课教学设计
教学目标和要求:
(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何判断二次函数。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.
(3)情感、态度与价值观:通过观察、操作、归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心. 教学重点:
对二次函数概念的理解。 教学难点:
由实际问题确定函数解析式。 教法学法设计:
1、从创设情境入手,通过知识再现,孕伏教学过程 2、从学生活动出发,通过以旧引新,顺势教学过程 3、利用探索、研究手段,通过思维深入,领悟教学过程 教学过程: 一、复习提问 1.什么是函数?
2.此前初中数学我们学过哪些函数?它们的一般形式? 【设计意图】复习这些问题是为了引入一元二次此函数做铺垫,帮助学生加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较。
二、引入新课 【自主探究】:
问题1:圆的半径为x,面积为y,请写出y与x之间的关系式。
问题2:正方形的边长为x,现将一边减少2,邻边增加1,求:新长方形的面积y与原正方形边长x之间的关系
二次函数压轴题之新定义问题(二)(讲义及答案)
二次函数压轴题之新定义问题(二)(讲义) 知识点睛
解决新定义问题时常考虑:
①回归新定义,给什么,用什么;将新定义与所给问题信息
结合分析转化;
②将新定义图形结构化、模型化,利用其相关特征、性质解
决问题.
精讲精练
1.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐
标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.下图为点P,Q的“相关矩形”的示意图.
(1)已知点A的坐标为(1,0).
①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;
②点C在直线x=3上,若点A,C的“相关矩形”为正方形,
求直线AC的表达式.
(2)⊙O的半径为2,点M的坐标为(m,3).若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m 的取值范围.
2.【定义】我们定义:平面内到一个定点F 和一条定直线l (点
F 不在直线l 上)距离相等的点的集合叫做抛物线,其中点F 叫做抛物线的“焦点”,直线l 叫做抛物线的“准线”.如图1,点O 即为抛物线1y 的“焦点”,直线l :2y =-即为抛物线1y 的“准线”.可以发现“焦点”F 在抛物线的对称轴上.
【理解
教学反思的定义
教学反思的定义
教学反思的定义提要:教师应当怎样对自己的教学进行反思呢?布鲁巴克等提出了以下四种反思的方法:一是反思日记。在一天的教学工作结束后,要求教师写下自己的经验 于
教学反思的定义 1、教学反思的涵义
教学反思是教师以自己的教学活动过程为思考对象,来对自己所做出的行为、决策以及由此所产生的结果进行审视和分析的过程,是一种通过提高参与者的自我觉察水平来促进能力发展的途径。
这里所说的反思与通常所说的静坐冥想式的反思不同,它往往不是一个人独处放松和回忆漫想,而是一种需要认真思索乃至极大努力的过程,而且常常需要教师合作进行。另外,反思不简单是教学经验的总结,它是伴随整个教学过程的监视、分析和解决问题的活动。
有人提出了以下三种反思:对于活动的反思。这是个体在行为完成之后对自己的行动、想法和做法的反思;活动中的反思。个体在行为过程中对自己的表现、想法、做法进行反思;为活动反思。这种反思是以上两种反思的结果,以上述两种反思为基础来指导以后的活动。
这三种反思在产生用于指导行为的知识的过程中有重要意义。首先,教师计划自己的活动,通过“活动中的反思”观察所发生的行为,就好像自己是局外人,借此来理解自己的行为与学生的反应之