sobel算子计算梯度例题

“sobel算子计算梯度例题”相关的资料有哪些?“sobel算子计算梯度例题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“sobel算子计算梯度例题”相关范文大全或资料大全,欢迎大家分享。

sobel算子

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

Sobel算子改进算法

通过以上对经典边缘检测算法的分析可知,Sobel算法的优点是计算简单,速

度快。但是由于只采用了2个方向的模板,只能检测水平和垂直方向的边缘,因此这种算法对于纹理较为复杂的图像,其边缘检测效果就不是很理想。该算法认为:凡灰度新值大于或等于阈值的像素点时都是边缘点。这种判断欠合理,会造成边缘点的误判,因为许多噪声点的灰度值也很大。由于图像的边缘有许多方向,除了水平方向和垂直方向外,还有其他的方向,下面将对Sobel算子进行改进,即将算子模板扩展到8个模板,如图3.1所示。

图3.1 8个方向模板

进过8个方向模板的计算,对某一幅图像进行逐点计算,并且去最大值为像素点的新灰度值,通过阈值的设定,判断边缘点。最大值对应的模板所表示的方向为该像素点的边缘方向。

Sobel改进算法的思想与步骤。

针对经典Sobel算子对边缘具有很强的方向性特点,设计了一种基于Sobel算子上改进的算法,其主要思想是先对图像进行全局阈值的分割处理,因为分割后的图像是二值图像,此时进行边缘提取,这就可以各个方向的边缘都可以检测到。但也可能会丢失原本直接用算子检测到的边缘。Sobel 算子的优点是方法简单、 处理速度快, 并且所得的边缘光滑, 其缺点是

FLUENT计算变量的梯度:VOF的梯度-pancard

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

1 FLUENT变量梯度宏

C_R_G C_P_G C_U_G C_V_G C_W_G C_T_G C_H_G C_YI_G C_R_RG C_P_RG C_U_RG C_V_RG C_W_RG C_T_RG C_H_RG C_YI_RG FLUENT计算中单元变量有两种梯度:非限制梯度(后缀_G)和重建梯度(后缀_RG),帮助文档建议如果需要通过单元变量重建计算单元面上的变量则使用重建梯度计算更精确。 说明:

(1) 只有当求解器正在求解某一变量时才能读取该变量的梯度。例如,定义一个能量源

项时,可以读取温度梯度(C_T_G),但是不能读取速度梯度(如C_U_G)。这是因为求解器不断释放它不需要的变量存储。如果你要保留这些变量梯度,可以使用TUI命令: solve/set/expert 设置“Keep temporary solver memory from being freed?” [Yes]。当然这样做,计算需要更多内存。

(2) C_R_G 只有density-based solver中才能使用; C_P_G只有pressure-based solver中

才能使用。

沉降计算例题

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

地基沉降量计算

地基变形在其表面形成的垂直变形量称为建筑物的沉降量。

在外荷载作用下地基土层被压缩达到稳定时基础底面的沉降量称为地基最终沉降量。

一、分层总和法计算地基最终沉降量

计算地基的最终沉降量,目前最常用的就是分层总和法。

(一)基本原理

该方法只考虑地基的垂向变形,没有考虑侧向变形,地基的变形同室内侧限压缩试验中的情况基本一致,属一维压缩问题。地基的最终沉降量可用室内压缩试验确定的参数(ei、Es、a)进行计算,有:

变换后得:

式中:S--地基最终沉降量(mm);

e1--地基受荷前(自重应力作用下)的孔隙比;

e2--地基受荷(自重与附加应力作用下)沉降稳定后的孔隙比; H--土层的厚度。 计算沉降量时,在地基可能受荷变形的压缩层范围内,根据土的特性、应力状态以及地下水位进行分层。然后按式(4-9)或(4-10)计算各分层的沉降量Si。最后将各分层的沉降量总和起来即为地基的最终沉降量:

(二)计算步骤

1)划分土层

如图4-7所示,各天然土层界面和地下水位必须作为分层界面;各分层厚度必须满足Hi≤0.4B(B为基底宽度)。 2)计算基底附加压力p0 3)计算各分层界面的自重应力σ4)确定压缩层厚度 满足σz=0.2σ

szsz

快速计算子网掩码和主机块

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

业务的发展常常会导致许多单位面临这样一个问题:工作站数量越来越多,管理单一的大型网络也变得越来越艰难。如果将一个单一的大型网络划分为多个子网,通过对每个子网进行单独管理,可以明显地提高整个网络的性能。

业务的发展常常会导致许多单位面临这样一个问题:工作站数量越来越多,管理单一的大型网络也变得越来越艰难。如果将一个单一的大型网络划分为多个子网,通过对每个子网进行单独管理,可以明显地提高整个网络的性能。

要划分子网就需要计算子网掩码和分配相应的主机块,尽管采用二进制计算可以得出相应的结论,但如果采用十进制计算方法,计算起来更为简便。经过长期实践与经验积累,笔者总结出子网掩码及主机块的十进制算法。

一、明确概念

在介绍十进制算法前我们先要明确一些概念。

类范围:IP地址常采用点分十进制表示方法X.Y.Y.Y,在这里,X在1~126范围内称为A类地址;X在128~191范围内称为B类地址;X在192~223范围内称为C类地址。比如10.202.52.130,因为X为10,在1~126范围内,所以称为A类地址。

类默认子网掩码:A类为 255.0.0.0; B类为 255.255.0.0; C类为 255.255.255.0。当我们要划分子

功能梯度材料

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

功能梯度材料

摘要: 功能梯度材料(FGM)是20世纪80年代出现的一种新型功能材料,它具有耐高温、耐磨损等许多优良性能,由于其结构和性能的优异特性,已成为材料领域研究的热点。本文主要介绍梯度功能材料的概念和特性,着重介绍梯度功能材料的制备方法,对国内外功能梯度材料的研究进展进行了综述,并重点介绍梯度功能材料现阶段的应用及发展趋势,对其前景的展望。 关键词:功能梯度材料、制备方法、应用前景 1.

引言

随着国防高科技的发展,超耐热材料在航天和航空工业中扮演着极其重要的角色。由于航空器在大气圈内高速飞行,机头尖端和机器发动机燃烧室中的内壁温度高达2000Κ以上,使材料处于极其恶劣的服役条件下,一方面,机体材料的外表面和燃烧室的内壁要具有超耐热性能,另一方面,机体材料的内表面和燃烧室的外壁要分别具有低温和超低温性能。而传统的金属材料和超耐热材料都难以满足这种服役条件。为此,人们试图将金属材料与超耐热材料复合,或在金属材料表面涂覆超耐热涂层以达到上述要求,但是,由于两种性质不同的材料的热膨胀系数相差太大,导致这两种材料接合界面的热应力太大, 因此使复合材料或涂层脱落、龟裂而失效。[1]

1987年, 日本科学技术厅航空宇宙技术研究所和东北大学

功能梯度材料

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

功能梯度材料

摘要: 功能梯度材料(FGM)是20世纪80年代出现的一种新型功能材料,它具有耐高温、耐磨损等许多优良性能,由于其结构和性能的优异特性,已成为材料领域研究的热点。本文主要介绍梯度功能材料的概念和特性,着重介绍梯度功能材料的制备方法,对国内外功能梯度材料的研究进展进行了综述,并重点介绍梯度功能材料现阶段的应用及发展趋势,对其前景的展望。 关键词:功能梯度材料、制备方法、应用前景 1.

引言

随着国防高科技的发展,超耐热材料在航天和航空工业中扮演着极其重要的角色。由于航空器在大气圈内高速飞行,机头尖端和机器发动机燃烧室中的内壁温度高达2000Κ以上,使材料处于极其恶劣的服役条件下,一方面,机体材料的外表面和燃烧室的内壁要具有超耐热性能,另一方面,机体材料的内表面和燃烧室的外壁要分别具有低温和超低温性能。而传统的金属材料和超耐热材料都难以满足这种服役条件。为此,人们试图将金属材料与超耐热材料复合,或在金属材料表面涂覆超耐热涂层以达到上述要求,但是,由于两种性质不同的材料的热膨胀系数相差太大,导致这两种材料接合界面的热应力太大, 因此使复合材料或涂层脱落、龟裂而失效。[1]

1987年, 日本科学技术厅航空宇宙技术研究所和东北大学

梯度下降法

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

梯度下降法,就是利用负梯度方向来决定每次迭代的新的搜索方向,使得每次迭代能使待优化的目标函数逐步减小。梯度下降法是2范数下的最速下降法。

最速下降法的一种简单形式是:x(k+1)=x(k)-a*g(k),其中a称为学习速率,可以是较小的常数。 g(k)是x(k)的梯度。

直观的说,就是在一个有中心的等值线中,从初始值开始,每次沿着垂直等值线方向移动一个小的距离,最终收敛在中心。

对于某一个性能指数,我们能够运用梯度下降法,使这个指数降到最小。若该指数为均方误差,我们便得到了最小均方误差(LMS)算法。

http://mdesign.tyut.edu.cn/kuai_su/youhuasheji/suanfayuanli/3.7.asp

多维无约束优化算法——梯度法

?

一、基本原理

通过变量轮换法、共轭方向法等的讨论,我们知道对多维无约束问题优化总是将其转化为在一系列选定方向

进行一维搜索,使目标函数值步步降低直至逼近目标函数极小点,而

方向的选择与迭代

速度、计算效率关系很大。人们利用函数在其负梯度方向函数值下降最快这一局部性质,将n维无约束极小化问题转化为一系列沿目标函数负梯度方向一维搜索寻优,这就成

运营管理计算例题

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

作业相关图法范例4-4:一个快餐店欲布置其生产与服务设施。该快餐店共分成 个部门 个部门, 范例 :一个快餐店欲布置其生产与服务设施。该快餐店共分成6个部门, 计划布置在一个2× 的区域内 已知这6个部门间的作业关系密切程度 的区域内。 个部门间的作业关系密切程度, 计划布置在一个 ×3的区域内。已知这 个部门间的作业关系密切程度, 如下图所示。请根据下图作出合理布置。 如下图所示。请根据下图作出合理布置。

解:1、列出关系密切程度(只考虑A和X): A:1-2,1-3,2-6 3-5,4-6,5-6 X:1-4,3-6,3-4 2 6 5图b 联系簇

4 1

2 6 3图c 联系簇

4

5

2、根据列表编制主联系簇,如图b所示。 3、考虑其它“A”关系部门,如图c所示。 4、画出“X”关系联系图,如图d所示。 5、根据联系簇图和可供使用的区域,用实验法安置所有部门。如图e所示。

1 4 3 6 图d 1 3 2 5 图e 6 4 2 1 6 3 4 5

图f (图f不符合“X”关系图)

装配线平衡

装配线平衡步骤如下: 装配线平衡步骤如下: (1)确定装配流水线节拍。 确定装配流水线节拍。

计划期有效工作时间 节拍 (r ) = = Fe 计

桩基沉降计算例题

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

单桩、单排桩、桩中心距大于6倍桩径的疏桩基础

的沉降计算例题(JGJ94-2007 5.5.14条和附录F)

刘兴录 钱力航

某高层为框架-核心筒结构,基础埋深26m(7层地下室),核心筒采用桩筏基础。外围框架采用复合桩基,基桩直径1.0 m,桩长15 m,混凝土强度等级C25,桩端持力层为卵石层,单桩承载力特征值为Ra = 5200 kN ,其中端承力特征值为2080kN,梁板式筏形承台,筏板厚度hb=1.2 m,梁宽bl=2.0 m,梁高 hl= 2.2 m(包括筏板厚度),承台地基土承载力特征值

fak=360kPa,土层分布:0~26 m土层平均重度?=18

kN/m3;26m~27.93 m为中沙⑦1,?=16.9kN/m3; 27.93m~32.33 m

3

?为卵石⑦层, =19.8kN/m,ES=150MPa; 32.33m~38.73m为粘

土⑧层, ?=18.5kN/m,ES=18Mpa; 38.73m~40.53 m为细砂⑨

3

3

?层, =16.5kN/m,ES=75MPa; 40.53m~45.43 m为卵石⑨层, 1

?=20kN/m3,ES=150MPa; 45.43m~48.03 m为粉质粘土⑩层, ?=18kN/m3,

仪器分析计算例题

标签:文库时间:2024-10-05
【bwwdw.com - 博文网】

第二章气相色谱分析

例1:在一根90米长的毛细管色谱柱上测得各组分保留时间:正十四烷15.6min;正十五烷21.95min;正十六烷31.9min。计算色谱柱的死时间及载气平均速度。 解:方法一:同系物保留值之间存在以下关系:

r?rn,n?1n?1,n''''t/t?t/t R(n)R(n?1)R(n?1)R(n)

'可推导出: (tR?tM)代替tRtM?2tR(n?1)tR(n?1)?tR(n)(tR(n?1)?tR(n))?(tR(n)?tR(n?1))将正十四烷、正十五烷、正十六烷的

31.9?15.6?21.952保留时间代入公式:tM?min 得

(31.9?21.95)?(21.95?15.6)tM?4.40min? 载气的平均流速

u?L/tM?, 即

u?90?100/(4.40?60)cm/s?34.09cm/s

方法二:直接用甲烷测定死时间。即以甲烷的保留时间作为死时间。

例2:在一根2m长的色谱柱上,A、B、C、三组分的保留时间分别为2.42min、3.21min、5.54min;峰宽分别为0.12min、0.21min、0.48min。另测得甲烷的保留时间为1.02min。求:

(1)