一次函数y=kx+b的图像和性质
“一次函数y=kx+b的图像和性质”相关的资料有哪些?“一次函数y=kx+b的图像和性质”相关的范文有哪些?怎么写?下面是小编为您精心整理的“一次函数y=kx+b的图像和性质”相关范文大全或资料大全,欢迎大家分享。
19.2.2一次函数(2)一次函数的图像和性质
提问复习 1、什么叫正比例函数、一次函数?它 们之间有什么关系? 一般地,形如 y=kx(k是常数,k≠0) 的函数, 叫做正比例函数; 一般地,形如 y=kx+b(k,b是常数,k≠0) 的函数,叫 做一次函数。
当b=0时,y=kx+b就变成了 y=kx ,所以说正 比例函数是一种特殊的一次函数。 2、正比例函数的图象是什么形状? 正比例函数的图象是(经过原点的一条直线
)
3、正比例函数 y=kx(k是常数,k≠0)中, k的正负对函数图象有什么影响?y=kx 图 象y
性 质经过一、三象限 y随x增大而增大
K>0y
x
K<0
x
经过二、四象限 y随x增大而减小
既然正比例函数是特殊的一次 函数,正比例函数的图象是直线, 那么一次函数的图象也会是一条直 线吗? 它们图象之间有什么关系? 一次函数又有什么性质呢?
探索新知1、认识一次函数的图像画图:请大家用描点法在同一坐标系中画出函数函数y=-2x, y=-2x+3,y=-2x-3的图象。
1、列表 x y=-2x
2、描点 … -2 … 4 -1 0
3、连线 2 … -2 -4 … 1 -1 … 1
25 -1
03
y=-2x+3 … 7 y=-2x-3 … 1
-3 -5 -7 …
比一比:正比例函
一次函数的图像和性质(说课稿)
《一次函数的图像和性质(1)》说课稿 珠海市九洲中学 裴红梅 新课标理念下的数学教学,是师生之间、学生之间交流互动与共同发展的过程。 基于以上的教育教学理念,我对新人教版教科书八年级上册第十一章《一次函数》中《一次函数的图象和性质》第一节的知识做了教材分析、目标分析、学情分析、教法分析与学法指导、教学过程分析及教学评价等六个方面的分析。 下面我将结合这六个方面向各位专家、老师汇报我是如何分析教材和设计教学过程的。 一、教材分析 1、教材的地位和作用 本节课的教学内容是一次函数的图象和性质,它是正比例函数图象与性质的推广,在许多方面与正比例函数的图象与性质有着紧密联系。本节课是继续学习反比例函数、二次函数的图象和性质的重要基础,也是学习高中代数、解析几何以及其他数学分支的重要基础。 2、教学重点与难点 教学重点:一次函数的图象和性质。 教学难点:由函数的图象归纳得出函数的性质及对性质的理解。 3、教材处理 本节课是一节新知探究课。为了使学生在探索的过程中理解并掌握一次函数的图象和性质,我将会充分调动学生的学习积极性,引导学生开展观察、猜想、操作、比较、归纳、交流等多种形式的活动。 二、目标分析 认知 掌握一次函数图象的画法。 目标 理解一
一次函数的图像和性质教学反思
篇一:一次函数图像教学反思
一次函数图像教学反思
一次函数图像>教学反思(一)
教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图像的对应关系应让学生动手去实践,去发现,对一次函数的图象是一条直线应让学生自己得出。在得出结论之后,让学生能运用 “ 两点确定一条直线 ” ,很快做出一次函数的图像。在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力。
根据学生状况,教学设计也应做出相应的调整 . 如第一环节:探究新知,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是 y=kx+b ,那么,一个一次函数对应的图形具有什么特征呢?今天我们就研究一次函数对应的图形特征 — 本节课是学生首次接触利用数形结合的思想研究一次函数图象和性质,对他们而言观察对象、探索思路、研究方法都是陌生的,因而在教学过程中我通过问题情境的创设,激发学生的学习兴趣,引导学生观察一次函数的图像,探讨一次函数的简单性质,逐步加深学生对一次函数及性质的认识。本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件求出
初二备课教案一次函数图像性质
初中数学
名思教育个性化学习中心 名思教育个性化学习中心 教育
学生姓名 日 期
年 级 时间段 理解一次函数图像性质 理解一次函数图像性质 一次函数的图像是一条直线 一次函数的图像是一条直线
初二
科
目
数学 贺国庆
班主任 课 时
辅导教师
教学目标 教学重点 教学难点 教学难点
一次函数的图像在坐标系中的平移规律 一次函数的图像在坐标系中的平移规律 一次函数的图像作法: 通过如下 3 个步骤 (1)列表 (2)描点;[一般取两个点,根据“两点确定一条直线”的道理]; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道 2 点,并
教
连成直线即可。 (通常找函数图像与 x 轴和 y 轴的交点分别是-k/b 与 0,0 与 b) y=kx+b 时: y=kx 时(即 b 等于 0,y 与 x 成正比)
学
当 k>0 时,直线必通过一、三象限,y 随 x 的增大而增大; 当 k<0 时,直线必通过二、四象限,y 随 x 的增大而减小。 k,b 与函数图像所在象限: 当 k>0,b>0, 这时此函数的图象经过一,二,三象限。
过
当 k>0,b<0, 这时此函数的图象经过一,三,四象限。 当 k<0,b>0, 这时此函数
初二备课教案一次函数图像性质
初中数学
名思教育个性化学习中心 名思教育个性化学习中心 教育
学生姓名 日 期
年 级 时间段 理解一次函数图像性质 理解一次函数图像性质 一次函数的图像是一条直线 一次函数的图像是一条直线
初二
科
目
数学 贺国庆
班主任 课 时
辅导教师
教学目标 教学重点 教学难点 教学难点
一次函数的图像在坐标系中的平移规律 一次函数的图像在坐标系中的平移规律 一次函数的图像作法: 通过如下 3 个步骤 (1)列表 (2)描点;[一般取两个点,根据“两点确定一条直线”的道理]; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道 2 点,并
教
连成直线即可。 (通常找函数图像与 x 轴和 y 轴的交点分别是-k/b 与 0,0 与 b) y=kx+b 时: y=kx 时(即 b 等于 0,y 与 x 成正比)
学
当 k>0 时,直线必通过一、三象限,y 随 x 的增大而增大; 当 k<0 时,直线必通过二、四象限,y 随 x 的增大而减小。 k,b 与函数图像所在象限: 当 k>0,b>0, 这时此函数的图象经过一,二,三象限。
过
当 k>0,b<0, 这时此函数的图象经过一,三,四象限。 当 k<0,b>0, 这时此函数
一次函数及其性质
(2012年1月最新最细)2011全国中考真题解析考点汇编☆一次函数及其性质 一、选择题
1. (2011新疆乌鲁木齐,5,4)将直线y=2x向右平移1个单位后所得图象对应的函数解析式为( ) A、y=2x-1 B、y=2x-2 C、y=2x+1 D、y=2x+2 考点:一次函数图象与几何变换。 专题:探究型。
分析:根据函数图象平移的法则进行解答即可.
解答:解:直线y=2x向右平移1个单位后所得图象对应的函数解析式为y=2(x-1), 即y=2x-2. 故选B.
点评:本题考查的是一次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.
2. (2011南昌,8,3分)已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值
可以是( ) A.﹣2 B.﹣1 C.0 D.2
考点:一次函数图象与系数的关系. 专题:探究型.
分析:根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.
解答:解:∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选D.
点评
一次函数及其性质
(2012年1月最新最细)2011全国中考真题解析考点汇编☆一次函数及其性质 一、选择题
1. (2011新疆乌鲁木齐,5,4)将直线y=2x向右平移1个单位后所得图象对应的函数解析式为( ) A、y=2x-1 B、y=2x-2 C、y=2x+1 D、y=2x+2 考点:一次函数图象与几何变换。 专题:探究型。
分析:根据函数图象平移的法则进行解答即可.
解答:解:直线y=2x向右平移1个单位后所得图象对应的函数解析式为y=2(x-1), 即y=2x-2. 故选B.
点评:本题考查的是一次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.
2. (2011南昌,8,3分)已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值
可以是( ) A.﹣2 B.﹣1 C.0 D.2
考点:一次函数图象与系数的关系. 专题:探究型.
分析:根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.
解答:解:∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选D.
点评
20.3(1)一次函数的性质
20.3 一次函数的性质(1)
教学目标
1、通过观察多个一次函数图形所反应的函数值随自变量变化而变化的活动,归纳、总结一次函数的基本性质;
2、掌握一次函数的基本性质,并能运用它解决一些简单的问题;
3、在讨论、探索一次函数的性质的过程中,关注由形到数、由数到形的转化,体会数形结合的思想和研究函数性质的方法. 教学重点及难点
归纳、总结一次函数的基本性质,运用性质解决一些简单的问题. 教学过程
一、复习引入 1、回顾
(1)一次函数y=kx+b的图像. (2)正比例函数y=kx的图像与性质
(经过第 象限,函数值y随自变量x的增大而 ) 正比例函数y=2x与函数y=-2x. 2、引入
一次函数y=kx+b会有什么的性质呢? 二、学习新课 1、观察与思考
(1)观察:函数y=2x+5与函数y=2x-5的图像.
(2)思考:经过第 象限,函数值y随自变量x的增大而 . 2、一次函数的性质
?b?0,经过第一、二、三象限?(1)当k>0时,?,y随x的增大而增大.
??b?0,经过第一、三、四象限??b?0,经过第一、二、四象限(2)当k<0时,?,y随x的增大而减小.
??b?0,经过第二、三
10.2一次函数和它的图像(1)
10.2一次函数和它的图像 第一课时
下列问题中变量间的对应关系可用怎样 的函数表示?这些函数有什么共同点?(1)有人发现,在20-25 C 时,蟋蟀每分钟鸣叫次数C与温度t(o C )有关 ,即C 的值大约是t的7倍与35的差; (2) 一种计算成年人标准体重G(千克)的方法是,以厘米为单位量出身高 值h减去常数105,所得的差是G的值; (3)某城市的市内电话的月收费额y(单位:元) 包括:月租费22元,拨 打电话x分的计时费按0.1元/分收取; (4)把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单 位:cm2)随x的值而变化。 (5)某登山队大本营所在地的气温为5℃,海拔每升高1㎞气温下降6 ℃,登 山队员由大本营向上登高x㎞时,他们所在位置的气温是y ℃,试用解析式 表示y与x的关系。 (6)磁悬浮列车自上海浦东 机场出发, 运行10km 后,便以300km∕h的速度匀速行驶。 如果从运行10km后开始计时,你能写出该列车 离开浦东机场站的距离s(单位:米)与时间t (单位:秒)之间的函数 关系式吗?o
y=-6x+5y=0.1x+22y=-5x+50
S=10+300t
G= h-105 C =7t-35
这些函
一次函数25.5 一次函数的应用
《一次函数》常考题一次函数的应用
解答题
151.(2004?福州)如图所示,l1和l2分别表示一种白炽灯和一种节能灯的费用y(元)与照明时间x(小时)的函数关系图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(费用=灯的售价+电费) (1)根据图象分别求出l1,l2的函数关系式; (2)当照明时间为多少时,两种灯的费用相等?
(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.
152.(2001?南京)某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克(1微克=10毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克),随时间x(小时)的变化如图所示. 当成人按规定剂量服药后,
(1)分别求出x≤2和x≥2时,y与x之间的函数关系式;
(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?
﹣3
153.(2002?大连)某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开办了海产品运输业务.已知运输路程为120千米,