高数同济七版电子课本上册
“高数同济七版电子课本上册”相关的资料有哪些?“高数同济七版电子课本上册”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高数同济七版电子课本上册”相关范文大全或资料大全,欢迎大家分享。
高数练习同济版
练习一
一.填空题(每小题4分,共24分)
?xy,(x,y)?(0,0),?221.函数f(x,y)??x?y 在点(0,0)处 .
?0,(x,y)?(0,0)?(A)有二重极限但不连续.
(C)连续但不可偏导.
(B)不连续但可偏导. (D)连续且可偏导.
2.三元函数u?sin(xy)?cos(yz)在点?1,????,1?处的全微分4?du? .
?z?x2?2y2, 3.曲线?在点(1,1,3)处的一个单位切向量
x?2y?z?6?为 .
x2y24.设平面区域D:2?2?1?a?0,b?0?,则??(x?y)5d?? .
abD5.设曲线L是三角形ABC区域的的正向边界,其中A、B、C的坐标分
别为(?1,0)、(1,0)、(0,1),则2ycos2xdx?(sinxcosx?x)dy? .
?L6.设an?(A)
(?1)n?1n?n?1,?2,??,则以下级数中收敛的是 .
2n??(?1)n?1?n?1an. (B)?a. (C)?anan?1.
n?1n?1(D)
??an?1?
高数同济五版(47)
习题6?3
1? 由实验知道? 弹簧在拉伸过程中? 需要的力F(单位? N)与伸长量s(单位? cm)成正比? 即F?ks (k为比例常数)? 如果把弹簧由原长拉伸6cm? 计算所作的功?
解 将弹簧一端固定于A? 另一端在自由长度时的点O为坐标原点? 建立坐标系? 功元素为dW?ksds? 所求功为
126 W??ksds?ks?18k(牛?厘米)?
0206 2? 直径为20cm、高80cm的圆柱体内充满压强为10N/cm2的蒸汽? 设温度保持不变? 要
使蒸汽体积缩小一半? 问需要作多少功? 解 由玻?马定律知?
PV?k?10?(?102?80)?80000??
P(x)?[(?102)(80?x)]?80000?? P(x)?80080?? 设蒸气在圆柱体内变化时底面积不变? 高度减小x厘米时压强 为P(x)牛/厘米2? 则
?
功元素为dW?(??102)P(x)dx? 所求功为 W??400408001dx?800?ln2(J)?
(??10)?dx?80000??080??80??2 3? (1)证明? 把质量为m
高数同济五版(7)
习题12?4
1? 求下列微分方程的通解? (1)
dy?y?e?x? dx?dxdx 解 y?e?(e?x?e?dx?C)?e?x(e?x?exdx?C)?e?x(x?C)?
?? (2)xy??y?x2?3x?2?
解 原方程变为y??1y?x?3?2xx?
1 y?e??1xdx[?(x?3?2?xdxx)?edx?C] ?1x[?(x?3?21x)xdx?C]?x[?(x2?3x?2)dx?C] ?11332x(3x?2x?2x?C)?13x2?3C2x?2?x? (3)y??ycos x?e?sin x?
解 y?e??cosdx(?e?sinx?e?cosxdxdx?C)
?e?sixn(?e?sixn?esinxdx?C)?e?sixn(x?C)?
(4)y??ytan x?sin 2x?
解 y?e??tanxdx(?sin2x?e?tanxdxdx?C)
?elncosx(?sin2x?e?lncoxsdx?C)
?cosx(?2sinxc
高数同济五版(7)
习题12?4
1? 求下列微分方程的通解? (1)
dy?y?e?x? dx?dxdx 解 y?e?(e?x?e?dx?C)?e?x(e?x?exdx?C)?e?x(x?C)?
?? (2)xy??y?x2?3x?2?
解 原方程变为y??1y?x?3?2xx?
1 y?e??1xdx[?(x?3?2?xdxx)?edx?C] ?1x[?(x?3?21x)xdx?C]?x[?(x2?3x?2)dx?C] ?11332x(3x?2x?2x?C)?13x2?3C2x?2?x? (3)y??ycos x?e?sin x?
解 y?e??cosdx(?e?sinx?e?cosxdxdx?C)
?e?sixn(?e?sixn?esinxdx?C)?e?sixn(x?C)?
(4)y??ytan x?sin 2x?
解 y?e??tanxdx(?sin2x?e?tanxdxdx?C)
?elncosx(?sin2x?e?lncoxsdx?C)
?cosx(?2sinxc
高数复习大纲同济六版下册
1、向量与空间几何 向量:向量表示((a^b));
向量的模? 向量的大小叫做向量的模? 向量a、?a、AB的模分别记为|a|、|a|、|AB|? 单位向量? 模等于1的向量叫做单位向量?
零向量? 模等于0的向量叫做零向量? 记作0或0? 零向量的起点与终点重合? 它的方向可以看作是任意的?
向量的平行? 两个非零向量如果它们的方向相同或相反? 就称这两个向量平行? 向量a与b平行? 记作a // b? 零向量认为是与任何向量都平行? 向量运算(向量积); 1. 向量的加法 2. 向量的减法
3.向量与数的乘法
设a?(ax? ay? az)? b?(bx? by? bz)
即 a?axi?ayj?azk? b?bxi?byj?bzk ? ?
则 a?b ?(ax?bx)i?(ay?by)j?(az?bz)k ?(ax?bx? ay?by? az?bz)? a?b? (ax?bx)i?(ay?by)j?(az?bz)k?(ax?bx? ay?by? az?bz)?
?a??(axi?ayj?azk) ?(?ax)i?(?ay)j?(?az)k ?(?ax? ?ay? ?az
同济第五版高数习题答案 - 图文
习题9?1
1. 设有一平面薄板(不计其厚度), 占有xOy面上的闭区域D, 薄板上分布有密度为μ =μ(x, y)的电荷, 且μ(x, y)在D上连续, 试用二重积分表达该板上全部电荷Q.
解 板上的全部电荷应等于电荷的面密度μ(x, y)在该板所占闭区域D上的二重积分 . 2. 设, 其中D 又, 其中D
1
2
={(x, y)|?1≤x≤1, ?2≤y≤2};
1
2
={(x, y)|0≤x≤1, 0≤y≤2}.
2
试利用二重积分的几何意义说明I与I的关系.
1
解 I表示由曲面z=(x+y)与平面x=±1, y=±2以及z=0围成的立体V的体积. I表示由曲面z=(x+y)与平面x=0, x=1, y=0, y=2以及z=0围成的立体V的体积.
2
1
23
223
显然立体V关于yOz面、xOz面对称, 因此V是V位于第一卦限中的部分, 故
1
V=4V, 即I=4I.
1
1
2
3. 利用二重积分的定义证明: (1)∫∫ (其中σ为D的面积);
证明 由二重
高数同济六版第四章复习
第四章复习提要
4.1 不定积分的概念和性质
1、基本积分表 2、公式
??f(x)dx??f(x)和?f?(x)dx?f(x)?C
?12x?C 2?3、注意如下问题:(填空、选择、判断) 若e?x2是f(x)的原函数,则xf(lnx)dx??若f(x)是e?x的原函数,则
?f(lnx)1dx? ?C0lnx?C xx若f(x)的导数为sinx,则f(x)的一个原函数是(B)。 A 1?sinx; B 1?sinx; C 1?cosx; D 1?cosx
4.2 换元积分法
1、第一换元法的原理:g(x)dx
把被积函数g(x)凑成g(x)?f(?(x))??(x)的形式, 因而这种方法也称为凑微分法。
2、一些规律: ①
????f(x)1xdx?2?f(x)(x)??2?f(x)dx
11?f(ax?b)(ax?b)dx?f(ax?b)d(ax?b) ??aa②③
f(ax?b)dx?1f(lnx)dx??f(lnx)(lnx)?dx??f(lnx)d(lnx)
x(2k?1)④sin?xcosnxdx??sin2kxcosnxsinxdx???(1?cos2x)cosnxdcosx xsinnxdx??cos2kxsinnxcosxdx??
人教版七年级语文课本上册课后练习参考答案
人教版七年级语文上课后练习参考答案
1 在山的那边
一 诗中的“海”与“山”,蕴含着什么意思?
答:海,是理想境界;山,是重重艰难险阻。全诗表达了这样的思想感情:要达到理想境界,是要历尽千辛万苦的。惟有不怕困难,百折不挠,才能实现人生理想。
二 联系上下文,品味下边诗句中加下划线的词语(括号里的问题可做参考)。 1.我常伏在窗口痴想(这个词在这里是什么意思?)
答:“痴想”原意是发呆地想,这里的意思是,总是神往于大山外面的世界,达到了痴迷的程度。说 明“我”从小就不愿困居于狭小的天地,追求新的天地。 2.山那边的山啊,铁青着脸(这是写山的颜色吗?)
答:“铁青着脸”,是“我”心情沮丧时的主观感觉。本希望看见大海,结果望见的依然是山,大失所望,沮丧极了,好像山在那里责备我痴心妄想,脸色铁青。
3.当我爬上那一座座诱惑着我的山顶(“山顶”的诱惑力在哪里?)
答:因为总以为爬上山顶就可以望见大海,所以每座山顶都是那样富有诱惑力。 4.一次次漫湿了我枯干的心灵(“枯干”在这里是什么意思?) 答:“枯干”形容对理想的渴望。 2 走一步,再走一步
一 朗读课文,复述故事情节,说说你从中悟出了什么生活哲理。
答:本文蕴含的哲理:在人生道路上,
课本上的习题(下册)--横线以上的
第十二章 数项级数
§1 级数的收敛性
1.证明下列级数的收敛性,并求其和数:
(1)
11 ? 61?16 ? 111?122111 ? 16?13?????1(5n?4) ? (5n?1)12n????;
(2) (?)?(23?)?????(2?13n)????;
(3)
?n?1?1n(n?1)(n?2);
(4)
?(n?1?n?2?2n?1?n);
(5)
?n?12n?1n2;
2.证明:若级数?un发散,c?0,则?cun也发散. 3.设级数
vn(n?1,2,???)?un与?vn都发散,试问?(un?vn)一定发散吗?又若un与
都是非负数,则能得出什么结论?
?4.证明:若数列{an}收敛于a,则级数?(an?an?1)?a1?a.
n?15.证明:若数列{bn}有limbn??,则
n??(1)级数?(bn?1?bn)发散; (2)当bn?0时,级数?(1bn?1bn?1)?1b1.
6.应用第4,5题的结果求下列级数的和:
?(1)
?(a?n?1)(a?n);
n?1?1(2)
?n?1?(?1)n?12n?1n(n?1)2n?1;
(3)
?(nn?12?1)[(n?1)?1]2.
7.应用柯西准则判别下列级数的敛
鲁教版七年级上册数学电子课本下载
鲁教版七年级上册数学电子课本下载
篇一:七年级上册电子版数学课本人教版
数学
七年级上册
人教版
篇二:七年级上册电子版数学课本人教版
数学
七年级上册
人教版
篇三:数学初一七年级上册电子课本
初一(七年级)上学期期末试卷(华师大版)
数学试卷
(满分:120分考试时间:120分钟)
一、填空题(每题2分,共20分)
1、的倒数是_______;相反数是_______。
2、比较大小(用”>”或”<”表示)
。
3、用代数式表示:(1)a与b的差的平方:__________________;
(2)a的立方的2倍与-1的和:__________________。
4、若=______。
5、用计算器计算=______。,则代数式=______;若,则代数式
6、如图,A、B、C三点在同一直线上,(1)用上述字母表示的不同线段共有_____条;(2)图中不同射线共有_____条。
7、22.5°=_____°_____′;12°24′=_______°。
8、已知点B在直线AC上,AB=8cm,AC=18cm,P、Q分别是AB、AC的中点,则PQ=______。
9、如图,是某晚报“百姓热线”一周内接到的热线电话的统计图,