高中立体几何教学设计
“高中立体几何教学设计”相关的资料有哪些?“高中立体几何教学设计”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中立体几何教学设计”相关范文大全或资料大全,欢迎大家分享。
详解十五道高中立体几何典型易错题
典型立体几何题
典型例题一
例1 设有四个命题:
①底面是矩形的平行六面体是长方体; ②棱长都相等的直四棱柱是正方体;
③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体; ④对角线相等的平行六面体是直平行六面体. 其中真命题的个数是( )
A.1 B.2 C.3 D.4
分析:命题①是假命题.因为底面是矩形的直平行六面体才是长方体.底面是矩
形,侧棱不垂直于底面,这样的四棱柱仍是斜平行六面体;
命题②是假命题.底面是菱形,底面边长与棱长相等的直四棱柱不是正方体; 命题③是假命题.因为有两条侧棱垂直于义面一边不能推出侧棱与底面垂直. 命题④是真命题,如图所示,平行六面体ABCD-A1B1C1D1中所有对角线相等,对角面B1BDD1是平行四边形,对角线
BD1?B1D,所以四边形B1BDD1是矩形,即BB1?BD,同理四边形A1ACC1是矩形,所以AA1?AC,由AA1//BB1知BB1?底面ABCD,即该平行六面体是直平行六面体.
故选A.
说明:解这类选择题的关键在于理清各种棱柱之间的联系与区别,要紧扣底面形状及侧棱与底面的位置关系来解题.
下面我们列表来说明平行四边
高中立体几何(理科)高考题节选 学生版
立体几何(理科
1.(2009北京卷理)(本小题共14分)
如图,在三棱锥P ABC中,PA 底面ABC,PA AB, ABC 60, BCA 90, 点D,E分别在棱PB,PC上,且DE//BC
(Ⅰ)求证:BC 平面PAC;
(Ⅱ)当D为PB的中点时,求AD与平面PAC所成的角的大
小;
(Ⅲ)是否存在点E使得二面角A DE P为直二面角?并说
明理由.
2.(2009四川卷文)如图,在半径为3的球面上有A、B、C三点, ABC=90°,BA BC, 球心O到平面ABC的距离是
A.
C. 32,则B、C两点的球面距离是 2 B. 34 D.2 3
3.(2009江西卷理)正三棱柱ABC A1B1C1内接于半径为2的球,若A,B
两点的球面距离为 ,则正三棱柱的体积为 .
4.(2009四川卷文)如图,已知正三棱柱ABC A1B1C1的各条棱长都相
等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小
是 。
5.(2009全国卷Ⅰ文)已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M,
高中立体几何学习方法(一、图形观)
高中立体几何学习方法
根据我多年的高中数学教学经验,以及学生在学习过程中表现出的对立体几何的盲目性,我在以后的时间里会对立体几何的学习方法做一些总结。希望能给同学们带来帮助。
方法一:立体几何学习中的图形观
立体几何的学习离不开图形,图形是一种语言,图形能帮我们直观地感受空间线面的位置关系,培养空间想象能力。所以在立体几何的学习中,我们要树立图形观,通过作图、读图、用图、造图、拼图、变图培养我们的思维能力。
一、作图
作图是立体几何学习中的基本功,对培养空间概念也有积极的意义,而且在作图时还要用到许多空间线面的关系.所以作图是解决立体几何问题的第一步,作好图有利于问题的解决。
例1 已知正方体
中,点P、E、F分别是棱AB、BC、
的
中点(如图1).作出过点P、E、F三点的正方体的截面。
分析:作图是学生学习中的一个弱点,作多面体的截面又是作图中的难点,学生看到这样的题目不知所云。有的学生连结P、E、F得三角形以为就是所求的截面.其实,作截面就是找两个平面的交线,找交线只要找到交线上的两点即可。观察所给的条件(如图2),发现PE就是一条交线.又因为平面ABCD//平面
,由面面平行的性质可得,截面和面
F是
的中点,故取
的交线一定和PE平行。而
的
的中点
高中立体几何(理科)高考题节选 学生版
立体几何(理科
1.(2009北京卷理)(本小题共14分)
如图,在三棱锥P ABC中,PA 底面ABC,PA AB, ABC 60, BCA 90, 点D,E分别在棱PB,PC上,且DE//BC
(Ⅰ)求证:BC 平面PAC;
(Ⅱ)当D为PB的中点时,求AD与平面PAC所成的角的大
小;
(Ⅲ)是否存在点E使得二面角A DE P为直二面角?并说
明理由.
2.(2009四川卷文)如图,在半径为3的球面上有A、B、C三点, ABC=90°,BA BC, 球心O到平面ABC的距离是
A.
C. 32,则B、C两点的球面距离是 2 B. 34 D.2 3
3.(2009江西卷理)正三棱柱ABC A1B1C1内接于半径为2的球,若A,B
两点的球面距离为 ,则正三棱柱的体积为 .
4.(2009四川卷文)如图,已知正三棱柱ABC A1B1C1的各条棱长都相
等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小
是 。
5.(2009全国卷Ⅰ文)已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M,
高中立体几何学习方法(一、图形观)
高中立体几何学习方法
根据我多年的高中数学教学经验,以及学生在学习过程中表现出的对立体几何的盲目性,我在以后的时间里会对立体几何的学习方法做一些总结。希望能给同学们带来帮助。
方法一:立体几何学习中的图形观
立体几何的学习离不开图形,图形是一种语言,图形能帮我们直观地感受空间线面的位置关系,培养空间想象能力。所以在立体几何的学习中,我们要树立图形观,通过作图、读图、用图、造图、拼图、变图培养我们的思维能力。
一、作图
作图是立体几何学习中的基本功,对培养空间概念也有积极的意义,而且在作图时还要用到许多空间线面的关系.所以作图是解决立体几何问题的第一步,作好图有利于问题的解决。
例1 已知正方体
中,点P、E、F分别是棱AB、BC、
的
中点(如图1).作出过点P、E、F三点的正方体的截面。
分析:作图是学生学习中的一个弱点,作多面体的截面又是作图中的难点,学生看到这样的题目不知所云。有的学生连结P、E、F得三角形以为就是所求的截面.其实,作截面就是找两个平面的交线,找交线只要找到交线上的两点即可。观察所给的条件(如图2),发现PE就是一条交线.又因为平面ABCD//平面
,由面面平行的性质可得,截面和面
F是
的中点,故取
的交线一定和PE平行。而
的
的中点
空间立体几何教学设计与反思
高中数学教学设计与反思
江西省龙南中学:张国辉
空间几何体的三视图及其表面积和体积
【教学目标】 一、知识目标
熟练掌握已知空间几何体的三视图如何求其表面积和体积。 二、能力目标
先介绍由空间三视图求其表面积和体积,然后引导学生讨论和探讨问题。
三、德育目标
1.通过空间几何体三视图的应用,培养学生的创新精神和探究能力。 2.通过研究性学习,培养学生的整体性思维。 【教学重点】
观察、实践、猜想和归纳的探究过程。 【教学难点】
如何引导学生进行合理的探究。
【教学方法】
电教法、讲述法、分析推理法、讲练法 【教学用具】 多媒体、实物投影仪 【教学过程】
[投影]本节课的教学目标
1.熟练掌握已知空间几何体的三视图如何求其表面积和体积。 【学习目标完成过程】 一、复习提问
1.如何求空间几何体的表面积和体积(例如:球、棱柱、棱台等)? 2.三视图与其几何体如何转化? 二、新课讲解 [设置问题]
例1:(如下图1),这是一个奖杯的三视图,试根据奖杯的三视图计算出它的表面积和体积(尺寸如图1,单位:cm,π取314,结果精确到1cm3)。
[提出问题]
1.空间几何体的表面积和体积分别是什么?
2.怎样运用柱体、锥体、台体、球体的表面积与体积的公
立体几何
立体几何专题学科网 【例题解析】学科网 题型1 空间几何体的三视图以及面积和体积计算学科网 例1 某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a?b的最大值为学科网 A. 22
B. 23
C. 4
D. 25学科网 解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的高宽高分别为m,n,k,由题意得
m2?n2?k2?7,
m2?k2?6?n?1,学1?k2?a,1?m2?b,所以(a2?1)?(b2?1)?6?a2?b2?8,
学科网 ∴(a?b)2?a2?2ab?b2?8?2ab?8?a2?b2?16?a?b?4当且仅当a?b?2时取等号.例2下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是学科网 A.9π
B.10π
C.11π
D.12π学科网 解析:这个空间几何体是由球和圆柱组成的,圆柱的底面半径是1,母线长是3,球的半径是1,故其表面积是2??1?3?2???1?4??1?12?,答案D.学科网 例3 已知一个正三棱锥P?ABC的主视图如图所示,若AC?BC?223, 学科网 2PC?6,则此正三
《立体几何中的向量方法》教学设计
《立体几何中的向量方法》教学设计(2)
【教学目标】利用向量方法求解空间距离问题,可以回避此类问题中大量的作图、证明等步骤,而转化为向量间的计算问题. 【教学重点】:坐标法与向量法结合.
【教学难点】:适当地建立空间直角坐标系及添加辅助线. 【教学课时】:1课时 【课前准备】:课题 【教学过程设计】:
(1)点到平面的距离: 1.(一般)传统方法:
利用定义先作出过这个点到平面的垂线段, 再计算这个垂线段的长度; 2.还可以用等积法求距离; 3.向量法求点到平面的距离. 在Rt?PAO中,
??O?PdnAsin??d|AP|?d?|AP|sin?
l?P又sin??|AP?n||AP||n|
?dn?d?|AP?n||n|A?O(其中AP为斜向量,n为法向量)
例1:如图,已知正方形ABCD的边长为4,E、F分别是AB、AD的中点,GC⊥平面ABCD,且GC=2,求点B到平面EFG的距离.
分析:由题设可知CG、CB、CD两两互相垂直,可以由此建立空间直角坐标系.用向量法求解,就是求出过B且垂直于平面EFG的向量,它的长即为点B到平面EFG的距离.
解:如图,设CD?4i,CB?4j,CG?2
《立体几何中的向量方法》教学设计
《立体几何中的向量方法》教学设计(2)
【教学目标】利用向量方法求解空间距离问题,可以回避此类问题中大量的作图、证明等步骤,而转化为向量间的计算问题. 【教学重点】:坐标法与向量法结合.
【教学难点】:适当地建立空间直角坐标系及添加辅助线. 【教学课时】:1课时 【课前准备】:课题 【教学过程设计】:
(1)点到平面的距离: 1.(一般)传统方法:
利用定义先作出过这个点到平面的垂线段, 再计算这个垂线段的长度; 2.还可以用等积法求距离; 3.向量法求点到平面的距离. 在Rt?PAO中,
??O?PdnAsin??d|AP|?d?|AP|sin?
l?P又sin??|AP?n||AP||n|
?dn?d?|AP?n||n|A?O(其中AP为斜向量,n为法向量)
例1:如图,已知正方形ABCD的边长为4,E、F分别是AB、AD的中点,GC⊥平面ABCD,且GC=2,求点B到平面EFG的距离.
分析:由题设可知CG、CB、CD两两互相垂直,可以由此建立空间直角坐标系.用向量法求解,就是求出过B且垂直于平面EFG的向量,它的长即为点B到平面EFG的距离.
解:如图,设CD?4i,CB?4j,CG?2
立体几何综合复习教学案
立体几何综合复习教学案
徐州市贾汪区教研室高三数学中心备课组 徐州七中 宋友强
一、2008年高纲要求:
空间想象能力是对空间图形的观察、分析、抽象的能力.考查要求是:能够根据题设条件想象并作出正确的平面直观图形,并能够对空间图形进行分解和组合.
二、解读考纲:
立体几何的要求发生了很大的变化,注重空间的平行与垂直关系的判定,淡化空间角和空间距离的考查,因此立体几何的难度和以往相比有大幅度的降低,命题依据了《考试说明》和江苏省《普通高中课程标准》教学要求,因此在立体几何复习中依然围绕(三种)平行(三种)垂直关系的论证以及(三种)角和距离的简单计算的格局设计题目,强化以下几点: 1.高度重视立体几何基础知识的复习,扎实地掌握基本概念、定理和公式等基础知识。
2.复习过程中指导学生通过网络图或框图主动建构完整的知识体系,尤其要以线线、线面、面面三种位置关系形成网络,能够熟练地转化和迁移。
3.重视模型复习,强化学生的“想图、画图、识图、解图”的能力,重视图形语言、文字语言、符号语言转化的训练。尤其重视对所画的立体图形、三视图与真实图形思维理解上的一致性。
4.在完成解答题时,要重视培养学生规范书写,注意表述的逻辑性及准确性