立体几何向量垂直坐标公式
“立体几何向量垂直坐标公式”相关的资料有哪些?“立体几何向量垂直坐标公式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“立体几何向量垂直坐标公式”相关范文大全或资料大全,欢迎大家分享。
立体几何中的,向量方法(坐标法)
高二数学学案 教案编写: 审核人: 高二数学组 使用时间: 编号:1
3.2.立体几何中的向量方法(坐标法) 【学习目标】熟练掌握解决立体几何问题的坐标方法; 【学习重点】坐标法解决立体几何问题的三个步骤; 【学习难点】立体几何问题到向量坐标问题的转化; 【学习过程】 1、 直线的方向向量: 。 2、平面的法向量: 。 3、 例题2:如图二面角中α---L---β中AC、BD都与L垂直AC=a BD=b CD=c AB=d 求二面角α---L---β的余弦值 F'βB C αDlA例题讲解 D'例题1:如图四棱柱ABCD-A'B'C'D'中以A为顶点的三条棱长都相等,且它们彼此
立体几何中的,向量方法(坐标法)
高二数学学案 教案编写: 审核人: 高二数学组 使用时间: 编号:1
3.2.立体几何中的向量方法(坐标法) 【学习目标】熟练掌握解决立体几何问题的坐标方法; 【学习重点】坐标法解决立体几何问题的三个步骤; 【学习难点】立体几何问题到向量坐标问题的转化; 【学习过程】 1、 直线的方向向量: 。 2、平面的法向量: 。 3、 例题2:如图二面角中α---L---β中AC、BD都与L垂直AC=a BD=b CD=c AB=d 求二面角α---L---β的余弦值 F'βB C αDlA例题讲解 D'例题1:如图四棱柱ABCD-A'B'C'D'中以A为顶点的三条棱长都相等,且它们彼此
空间向量与立体几何
关于空间向量与立体几何
1 空间向量与立体几何
一、平行与垂直问题
(一) 平行
线线平行 线面平行 面面平行 注意:这里的线线平行包括线线重合,线面平行包括直线在平面内,面面平行包括面面重合。
(二) 垂直
线线垂直 线面垂直 面面垂直 注意:画出图形理解结论
二、夹角与距离问题
(一) 夹角
(二)距离
点、直线、平面之间的距离有7种。点到平面的距离是重点.
1.已知四棱锥P A B C D -的底面为直角梯形,//A B D C ,
设直线,l m 的方向向量分别为,a b ,平面 ,αβ的法向量分别为,u v ,则
l ∥m ?a ∥b a k b ?=
;
l ∥α?a
u ⊥ 0a u ??=
;
α∥β?u ∥v .u k v ?=
设直线,l m 的方向向量分别为
,a b ,平面 ,αβ的法向量分别为,u v ,则
l ⊥α?a ∥u a k u ?= ;
l ⊥m ?a ⊥b 0a b ??=
;
α⊥β?u ⊥v .0=??v u
设直线,l m 的方向向量分别为,a b ,平面,αβ 的法向量分别为,u v ,则
①两直线l ,m 所成的角为θ(02π
θ≤≤),cos a b
a b
θ?=
;
②直线l 与平面α
立体几何(向量法)—找点难(定比分点公式)
立体几何(向量法)—找点难(定比分点公式)
例1(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱
ABCD-A1B1C1D1中, 侧棱A1A⊥底面ABCD, AB//DC, AB⊥AD, AD = CD = 1, AA1 = AB = 2,
E为棱AA1的中点. (Ⅰ) 证明B1C1⊥CE;
(Ⅱ) 求二面角B1-CE-C1的正弦值.
(Ⅲ) 设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为的长.
2, 求线段AM6
【答案】解:方法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).
→→→→
(1)证明:易得B1C1=(1,0,-1),CE=(-1,1,-1),于是B1C1·CE=0,所以B1C1⊥CE. →
(2)B1C=(1,-2,-1),
设平面B1CE的法向量=(x,y,z),
→?B1C=0,??·?x-2y-z=0,则?即?消去x,得y+2z=0,不妨令z=1,可得一个法向量
?→-x+y-z=0,??CE=0,?m·
为=(-3,-2,1).
→
由(1),B1C1⊥
立体几何线线垂直专题(史上)
v1.0 可编辑可修改
11
立体几何垂直总结
1、线线垂直的判断:
线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。
补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。
2、线面垂直的判断:
(1)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。
(2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。
(3)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(4)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。
3、面面垂直的判断:
一个平面经过另一个平面的垂线,这两个平面互相垂直。
证明线线垂直的常用方法:
例1、(等腰三角形三线合一)如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。求证:(1)⊥AB 平面CDE;(2)平面CDE ⊥平面ABC 。
证明:(1)BC AC CE AB AE BE =??⊥?=?
同理,AD BD DE AB AE BE =??⊥?=? 又∵CE DE E ?= ∴AB ⊥平面CDE
(2)由(1)有AB ⊥平面CDE
又∵AB ?平面ABC , ∴平面CDE ⊥平面ABC 例2、(菱形
专题十 空间向量与立体几何
专题十 空间向量与立体几何
【知识点总结】
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
?????OP??a(??R)
?????????????? ?????????????? OB?OA?AB?a?bBA?OA?OB?a?b;
;
????运算律:⑴加法交换律:a?b?b?a
??????⑵加法结合律:(a?b)?c?a?(b?c)
????⑶数乘分配律:?(a?b)??a??b
运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那
??么这些向量也叫做共线向量或平行向量,a平行于b,记作。
??????(2)共线向量定理:空间任意两个向量a、b(b≠0),a//b存
??在实数λ,使a=λb。
??a//b(3)三点共线:A、B、C三点共线<=>AB??AC <=>OC?xOA?yOB(其中x?y?1) (4)与a共线的单位向
第3章 空间向量与立体几何 §3. 2 立体几何中的向量方法(一) -
§3.2 立体几何中的向量方法 (一>
—— 平行与垂直关系的向量证法
知识点一 求平面的法向量
已知平面α经过三点A(1,2,3>,B(2,0,-1>,C(3,-2,0>,试求平面α的一个法向量.
解∵A(1,2,3>,B(2,0,-1>,C(3,-2,0>,
=(1,-2,-4>,错误!=(1,-2,-4>, 设平面α的法向量为n=(x,y,z>. 依题意,应有n·
=0, n·错误!=0.
即错误!,解得错误!.令y=1,则x=2.b5E2RGbCAP ∴平面α的一个法向量为n=(2,1,0>.
【反思感悟】 用待定系数法求平面的法向量,关键是在平面内找两个不共线向量,列出方程组,取其中一组解(非零向量>即可.p1EanqFDPw 在正方体ABCD-A1B1C1D1中,E,F分别是BB1,DC的中点,求证:
是平面A1D1F的法向量.
DXDiTa9E3d 证明设正方体的棱长为1,建立如图所示的空间直角坐标系,则的法向量.
证明
是平面A1D1F
设正方体的棱长为1,建立如图所示的空间直角坐标系,则 A(1,0,0>,E错误!,RTCrpUDGiT =错误!..D1=(0,0,1>,5PCzVD7HxA F错误!,A1(1,0,1>.jLBHr
《立体几何中的向量方法》教学设计
《立体几何中的向量方法》教学设计(2)
【教学目标】利用向量方法求解空间距离问题,可以回避此类问题中大量的作图、证明等步骤,而转化为向量间的计算问题. 【教学重点】:坐标法与向量法结合.
【教学难点】:适当地建立空间直角坐标系及添加辅助线. 【教学课时】:1课时 【课前准备】:课题 【教学过程设计】:
(1)点到平面的距离: 1.(一般)传统方法:
利用定义先作出过这个点到平面的垂线段, 再计算这个垂线段的长度; 2.还可以用等积法求距离; 3.向量法求点到平面的距离. 在Rt?PAO中,
??O?PdnAsin??d|AP|?d?|AP|sin?
l?P又sin??|AP?n||AP||n|
?dn?d?|AP?n||n|A?O(其中AP为斜向量,n为法向量)
例1:如图,已知正方形ABCD的边长为4,E、F分别是AB、AD的中点,GC⊥平面ABCD,且GC=2,求点B到平面EFG的距离.
分析:由题设可知CG、CB、CD两两互相垂直,可以由此建立空间直角坐标系.用向量法求解,就是求出过B且垂直于平面EFG的向量,它的长即为点B到平面EFG的距离.
解:如图,设CD?4i,CB?4j,CG?2
空间向量与立体几何练习题
【练习】:对空间任一点O和不共线的三点A,B,C,问满足向量式
????????????????OP?xOA?yOB?zOC (其中x?y?z?1)的四点P,A,B,C是否共面?
解:∵OP?(1?z?y)OA?yOB?zOC,
????????????????????????????????????????∴OP?OA?y(OB?OA)?z(OC?OA), ????????????∴AP?yAB?zAC,∴点P与点A,B,C共面.
例2.已知
O D ?ABCD,从平面AC外一点O引向量
A HE ?????????????????????????????????OE?kOA,OF?KOB,OG?kOC,OH?kOD,
(1)求证:四点E,F,G,H共面; (2)平面AC//平面EG.
C B G
F ????????????解:(1)∵四边形ABCD是平行四边形,∴AC?AB?AD,
????????????∵EG?OG?OE,
?????????????????????????????k?OC?k?OA?k(OC?OA)?kAC?k(AB?AD)????????????????????????????????? ?k(OB?OA?OD?OA
法向量在立体几何中的应用.
1 法向量在立体几何中的应用
查宝才
(扬州市新华中学,江苏 225002)
向量在数学和物理学中的应用很广泛,在解析几何与立体几何里的应用更为直接,用向量的方法特别便于研究空间里涉及直线和平面的各种问题。将向量引入中学数学后,既丰富了中学数学内容,拓宽了中学生的视野;也为我们解决数学问题带来了一套全新的思想方法——向量法。下面就向量中的一种特殊向量——法向量,结合近几年的高考题,谈谈其在立体几何有关问题中的应用。
1 法向量的定义
1.1 定义1 如果一个非零向量n 与平面α垂直,则称向量n 为平面α的法向量。
1.2 定义2 任意一个三元一次方程:0=+++D Cz By Ax ,222(C B A ++ )0≠都表示空间直角坐标系内的一个平面,其中),,(C B A n =为其一个法向量。]1[ 事实上,设点),,(0000z y x P 是平面α上的一个定点,),,(C B A n =是平面α的法向量,设点),,(z y x P 是平面α上任一点,则总有n P P ⊥0。
∴ 00=?n P P , 故 0),,(),,(000=---?z z y y x x C B A ,
即 0)()()(000=-+-+-z z C y