简述pn结的形成原理
“简述pn结的形成原理”相关的资料有哪些?“简述pn结的形成原理”相关的范文有哪些?怎么写?下面是小编为您精心整理的“简述pn结的形成原理”相关范文大全或资料大全,欢迎大家分享。
PN结的形成及原理
PN结的形成 如果把一块本征半导体的两边掺入不同的元素,使一边为P型,另一边为N型,则在两部分的接触面就会形成一个特殊的薄层,称为PN结。PN结是构成二极管、三极管及可控硅等许多半导体器件的基础。
如图所示,是一块两边掺入不同元素的半导体。由于P型区和N型区两边的载流子性质及浓度均不相同,P型区的空穴浓度大,而N型区的电子浓度大,于是在交界面处产生了扩散运动。P型区的空穴向N型区扩散,因失去空穴而带负电;而N型区的电子向P型区扩散,因失去电子而带正电(P型半导体和N型半导体本身不带电,所以在失去载流子的时候产生极性),这样在P区和N区的交界处形成了一个电场(称为内电场)。
如图所示,PN结内电场的方向由N区指向P区,在内电场的作用下,电子将从P区向N区作漂移运动,空穴则从N区向P区作漂移运动。经过一段时间后,扩散运动与漂移运动达到一种相对平衡状态,在交界处形成了一定厚度的空间电荷区叫做PN结,也叫阻挡层,势垒(在外加电压的情况下,是P、N两边通过扩散和漂移积聚电荷,类似于电容,而PN结本身也具有一定的结电容,这个结电容主要就有势垒电容有关)。
PN结的工作原理
如图所示,如果将PN结加正向电压,即P区接正极,N区接负极,由于外加电压的电场方向和
PN结
4.27 PN结正向压降与温度关系的研究和应用
常用的温度传感器有热电偶、测温电阻器和热敏电阻等,这些温度传感器均有各自的优点,但也有它们的不足之处,如热电偶适用温度范围宽,但灵敏度低、且需要参考温度;热敏电阻灵敏度高、热响应快、体积小,缺点是非线性,且一致性较差,这对于仪表的校准和调节均感不便;测温电阻(如铂电阻)有精度高、线性好的优点,但灵敏度低且价格较贵;而PN结温度传感器则有灵敏度高、线性较好、热响应快和体小轻巧易集成化等优点,所以PN结温度传感器的应用日益广泛。但这类温度传感器的工作温度一般为-50℃-150℃,与其它温度传感器相比,测温范围的局限性较大,有待于进一步改进和开发。本实验就是研究PN结正向压降及其与温度的关系的。
4.27.1 实验目的
(1)了解PN结正向压降随温度变化的基本性质。
(2)在恒定正向电流条件下,测绘PN结正向压降随温度变化曲线,并由此确定其灵敏度及被测PN结材料的禁带宽度。
(3) 学习用PN结测量温度的方法。 4.27.2 实验原理
理想的PN结的正向电流IF和正向压降VF存在如下近似关系式:
IF?Isexp(qVF) (4-127)
能带理论用来详细解释PN结形成和光生伏特原理-也很有用
能带理论在半导体光生伏特效应中的应用 内 容 能带理论在半导体光生伏特效应中的应用 【本讲课程的内容】 一、基础知识与概念 1、费米能级的定义及其物理意义 1)费米能级的定义:根据量子力学理论,具有半奇数自旋量子数(通常为1/2)的费米子,如电子,遵循泡利不相容原理,即一个量子态只能被一个粒子所占据。因此,费米子在能级中的分布遵循费米-狄拉克分布。 f(E)?1E?EF,kB为玻尔兹曼常数.是指电子(研究对象)占据能带(导带)中某个能级的ek?1BT分布函数f(E)几率(电子的能量越往上越高)。如果是讨论空穴载流子的话(空穴的能量越往下越高),那么就应当是相应于价带中某个能级所空出(即没有被电子占据)的几率。 2)费米能级的物理意义:Fermi能级(EF)实际上起到了衡量能级被电子占据的几率大小的一个标准的作用。在E 能理解 补充:金属塑对于绝缘体和半导体,Fermi能级则处于禁带中间。特别是本征半导体和绝性变形缘体,因为它们的的价带是填满了价电子(占据几率为100%)、导带是完全空着其他形式:孪的(占据几率为0%),则它们的Fermi能级正好位于禁带中央(占据几率为50%)。生即使温度升高时,本征激发
PN结温度传感器原理及应用 - 图文
第32卷第7期2006年7月 电子工囊师
ELECTRONICENGINEER V01.32No.7 Jul.2006
PN结温度传感器原理及应用 赵洪涛
(淮安信息职业技术学院,江苏省淮安市223001)
摘要:介绍了采用PN结温度传感器进行温度测量的原理,在此基础上给出了PN结的信号调理电路,分析了各部分电路的特性,给出了由STC89系列单片机组成的测温电路系统及其程序流程,
并指出了减小测量误差的方法。
关键词:温度传感器;PN结;信号调理电路;单片机 中图分类号:TP212.11 0 引言
随着测温技术的迅速发展,新的测温传感器不断
出现,如光纤温度传感器、微波温度传感器、超声波温度传感器、核磁共振温度传感器、PN结温度传感器等在一些领域获得了广泛的应用。本系统充分利用温
度传感器测量温度快速、使用简便的特点,同时结合单片机的使用对数据进行实时处理,从而做到了对温度的
实时控制。 1
PN结温度传感器工作原理
二极管、三极管的特性与温度有很大关系,因此, 利用电压对温度的依赖关系制成PN结温度传感器。 已知PN结的电流.电压方程为: .,=(警+警)H券)一?](1) 设 卜警+警 则
.,=Js(exp(券)一?) (2) (3)
半导体与PN结教案
课程 授课时间 授课地点 模拟电子技术基础 10 综B 章节 授课教师 授课班级 PN结及其单向导电性 尹金兴 05机电工程 教学目的 撑握PN结的形成及其单向导电性的原理。 与要求 重点 难点 学会用原子结构理论分析PN结的形成及其单向导电性的原理 PN结的形成及其单向导电性的原理分析。 授课类型 讲授课 教学进程和时间分配表 序号 1 2 3 4 5 6 教学内容 组织教学 复习旧课引入新课 讲授新知识 (1)、PN结的形成 (2)、PN结的单向导电性 实验验证 知识回顾与提问(巩固所学知识) 布置作业 时间分配 2" 3" 28" 6" 5" 1" 教学方法 讲解、 演示、 提问、 实验观察 课后记要 电子技术课程比较抽象,应加强学生实验,增强直观性,同时也可培养学生的动手操作能力。 备注 本课程为电工、电子专业技术理论课。 教师的活动 教学内容和序列 学生的活动 - 1 -
导入教学 (3分钟) (配以相应的图片加以说明) (启发学生思考) 讲授新课 (36分钟) 教师的活动 复习半导体的基本知识: 通过上次课的讲解,我们知道:按杂质半导体中掺入杂质性质的不同,它可分
实验四 pn结特性测量
实验四 pn结特性测量
一、前言
早在六十年代初,人们就试图用PN结正向压降随温度升高而降低的特性作为测温元件,由于当时PN结的参数不稳定,始终未进入实用阶段。随着半导体工艺水平的提高及人们不断的探索,到七十年代时,PN结以及在此基础上发展起来的晶体管温度传感器,已成为一种新的测温技术跻身于各个领域了。
众所周知,常用的温度传感器有热电偶、测温电阻器和热敏电阻等,这些温度传感器均有各自的优点,但也有它的不足之处,如热电偶适用温度范围宽,但灵敏度低、线性差且需要参考温度;热敏电阻灵敏度高、热响应快、体积小,缺点是非线性,这对于仪表的校准和控制系统的调节均感不便;测温电阻器如铂电阻虽有精度高、线性好的长处,但灵敏度低且价格贵;而PN结温度传感器则具有灵敏度高、线性好、热响应快和体小轻巧等特点,尤其是温度数字化、温度控制以及用微机进行温度实时信号处理等方面,仍是其它温度传感器所不能比的,其应用势必日益广泛。目前结型温度传感器主要以硅为材料,原因是硅材料易于实现功能化,即将测温单元和恒流、放大等电路组成一块集成电路。美国Motorola电子器件公司在1979年就开始生产测温晶体管及其组件,如今灵敏度高达100mV/℃、分辨率不低于0.1℃的硅集成电
PN结器件电流—电压特性
实验一 PN结器件电流—电压特性
一、基本原理
PN结是半导体结型器件的核心,是IC电路的最基本单元,诸多半导体器件都是由PN结组成的。最简单的结型器件是半导体二极管,根据不同场合的用途,使用不同掺杂及材料制备工艺制成多种二极管,如整流二极管、检波二极管、光电二极管(发光二极管、光敏二极管)等;三极管与结型晶体管就是由两个PN结构成的。因此深入了解与掌握PN结的基本特性,是掌握与应用晶体管等结型器件的基础。
PN结的最重要特性是单向导电性,即具有整流特性。也就是说,正向表现低阻性,反向为高阻性。若在PN结上加上正向偏压(P区接正电压、N区接负电压)则电流与电压呈指数关系,如下式 I?I0?exp??qv?? (Ⅰ) nkT??式中q是电子电荷,K是波尔兹曼常数,T是工作温度(K),V是外加电压,n是复合因子,
根据实际测量曲线求出。随着电压缓慢升高
PN结正向伏安特性曲线随温度的变化
PN结正向伏安特性曲线随温度的变化
6
物理实验
第 2 3卷
第 l O期
PN结正向伏安特性曲线随温度的变化胡险峰摘
朱世国
(川大学物理学院四川成都 60 6 )四 1 0 4要:绍了在不同温度下, N结正向伏安特性曲线的自动测量方法。论了 P结伏安特性与温度的关介 P讨 N
系 .由于正向结电压小于内建电势差,度升高或正向结电压增加,向结电流将增大,度升高反向结电流也相温正温应增加.当温度趋向 O时。向结电压趋向内建电势差 . K正关键词: N结 I安特性曲线 I度;建电势差 P伏温内中圈分类号: 7 04 5文献标识码: A文章编号 ̄ 0 54 4 (0 3 1— 0 60 1 0— 6 2 2 0 ) 00 0—4
V a i to f po ii e v t a pe e c r t r s i s o r a i n o s tv ol- m r ha ac e itc f
P j n to t e e a u e N u cin wih tmp r t rHU a -e g ZH U h— u Xin f n S ig o( y isCo lg,Sih a n v r iy,Ch n d Ph sc le e c u n
PN结正向压降与温度关系
PN结正向压降温度特性的研究
一、前言
早在六十年代初,人们就试图用PN结正向压降随温度升高而降低的特性作为测温元件,由于当时PN结的参数不稳定,始终未能进入实用阶段。随着半导体工艺水平的提高以及人们不断地探索,到七十年代时,PN结以及在此基础上发展起来的晶体管温度传感器,已成为一种新的测温技术跻身各个应用领域了。
众所周知,常用的温度传感器有热电偶、测温电阻器和热敏电阻等,这些温度传感器均有各自的优点,但也有它的不足之处,如热电偶适用范围宽,但灵敏度低、线性差且需要参考温度;热敏电阻灵敏度高、热响应快、体积小、缺点是非线性,这对于仪表的校准和控制系统的调节均感不便;测温电阻器如铂电阻虽有精度高、线性好的长处,但灵敏度低且价格昂贵;而PN结温度传感器则具有灵敏度高、线性好、热响应快和体积轻巧等特点,尤其是在温度数字化、温度控制以及用微机进行温度实时信号处理等方面,乃是其他温度传感器所不能相比的,其应用势必日益广泛。目前结型温度传感器主要以硅为材料,原因是硅材料易于实现功能化,即将测温单元和恒流、放大等电路组合成一块集成电路。美国Motorola电子器件公司在1979年就开始生产测温晶体管及其组件,如今灵敏度高达100mv/C、分辨率不低于0.
基于PN结的热电偶补偿电路设计
研羝.弗镤计
电子测量技术
EI。ECTRONIC
第33卷第11期2010年11月
MEASUREMENT
TECHNOLOGY
基于PN结的热电偶补偿电路设计
包晔峰
单明东
杨
可常州
蒋永锋
213022)
(河海大学机电工程学院
摘要:热电偶在温控系统中得到了广泛应用,但在实际测温过程中对热电偶的冷端补偿是必不可少的。分析了几种常用的热电偶冷端补偿方法的优缺点,根据1N4148在恒流条件下其管压降与温度的线性关系设计了一种基于PN结的热电偶冷端补偿电路。该补偿方法具有成本低、精度高、通用性强等优点,该电路可以对不同型号的热电偶进行冷端补偿,同时具有断偶检测功能。对E型热电偶进行了冷端补偿试验,结果表明,该补偿电路对热电偶冷端补偿后使得温度偏差≤1℃。
关键词:热电偶;冷端补偿;PN结;恒流源;断偶检测中图分类号:TM930.115
文献标识码:A
。
Designofthermocouplecompensationcircuitbased
BaoYefeng
(College
of
on
PN
junction
Shan
and
Mingdong
YangKe
JiangYongfeng
Electronic
Mechanical,HohaiUniversity,Changzhou213022