1999年数学一真题答案解析
“1999年数学一真题答案解析”相关的资料有哪些?“1999年数学一真题答案解析”相关的范文有哪些?怎么写?下面是小编为您精心整理的“1999年数学一真题答案解析”相关范文大全或资料大全,欢迎大家分享。
1999年数学一真题及答案详解
1999年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)lim(x?011?)=_____________. 2xxtanxdxsin(x?t)2dt=_____________. (2)?dx0(3)y???4y?e2x的通解为y=_____________.
(4)设n阶矩阵A的元素全为1,则A的n个特征值是 _____________.
(5)设两两相互独立的三事件A,B和C满足条件:ABC??,P(A)?P(B)?P(C)?且已知P(A1, 2BC)?9,则P(A)=_____________. 16
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
(1)设f(x)是连续函数,F(x)是f(x)的原函数,则 (A)当f(x)是奇函数时,F(x)必是偶函数
(B)当f(x)是偶函数时,F(x)必是奇函数
(D)当f(x)是单调增函数时,F(x)必是单调
(C)当f(x)是周期函数时,F(x)必是周期函数 增函数
?1?cosx x?0?(2)设f(x)??,其中g(
2011年数学一考研真题加答案免费
2011年全国硕士研究生入学统一考试数学一试题(含答案)
一、选择题
1.曲线y (x 1)(x 2)2(x 3)2(x 4)2拐点 A(1,0) B(2,0) C(3,0) D(4,0) 2设数列 an 单调递减,liman 0,Sn
n
无界,则幂级数 a(x 1) a(n 1,2, )
k
k
k 1
k 1
nn
n
的
收敛域
A(-1,1] B[-1,1) C[0,2) D(0,2]
3.设函数f(x)具有二阶连续导数,且f(x) 0,f (0) 0,则函数z f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件
Af(0) 1,f (0) 0 Bf(0) 1,f (0) 0 Cf(0) 1,f (0) 0 Df(0) 1,f (0) 0 4.设I
lnsinxdx,J lncotxdx,K lncosxdx则I、J、K的大小关系是
00
A I<J<K B I<K<J C J<I<K D K<J<I
5.设A为3阶矩阵,将A的第二列加到第一列得矩阵B,再交换B的第二行与第一行得单
100 100 P1 111 ,P2 001 ,
1998-2010年数学一考研真题
2010年全国硕士研究生入学统一考试
数学(一)试卷
一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)
??x(1)极限lim??= x??(x?a)(x?b)??2x(A)1 (C)ea?b
yx,
zx
(B)e (D)eb?a
(2)设函数z?z(x,y)由方程F(?z?x?z?y)?0确定,其中F为可微函数,且F2??0,则
x?y=
10m(A)x (C)?x
2 (B)z (D)?z
dx的收敛性
(3)设m,n为正整数,则反常积分?(A)仅与m取值有关 (C)与m,n取值都有关
nnln(1?x)nx =
(B)仅与n取值有关 (D)与m,n取值都无关
(4)limx????i?1j?1n(n?i)(n?j)22(A)
1x??0dx?1(1?x)(1?y)1(1?x)(1?y)20dy (B)
1x??0dx?1(1?x)(1?y)10dy
(C)
101dx?0dy (D)
101dx?0(1?x)(1?y)2dy
(5)设A为m?n型矩阵,B为n?m型矩阵,若AB?E
考研数学一历年真题(1999-2013)打印版
1999年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)
(1)20
11lim(
)tan x x x x
→-=_____________. (2)
20
sin()x
d x t dt dx -?=_____________. (3)24
e x y y ''-=的通解为y =_____________. (4)设n 阶矩阵A 的元素全为1,则A 的n 个特征
值是 _____________.
(5)设两两相互独立的三事件,A B 和C 满足条
件:1
,()()(),2
ABC P A P B P C =?==<
且
已
知
9(),16
P A B C =
则
()P A =_____________.
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
(1)设()f x 是连续函数,()F x 是()f x 的原函数,则 (A)当()f x 是奇函数时,()F x 必是偶函数 (B)当()f x 是偶函数时,()F x 必是奇函数 (C)当()f x 是周期函数时,()F x 必是周期函数
(D)当()f x 是单调增函数时
2014年考研数学一真题与解析
2014年考研数学一真题与解析
一、选择题
1—8小题.每小题4分,共32分.
1.下列曲线有渐近线的是
(A)y x sinx
(B)y x sinx
2
2
(C)y x sin
1x
(D)y x sin
1x
【分析】只需要判断哪个曲线有斜渐近线就可以.【详解】对于y x sin应该选(C)
2.设函数f(x)具有二阶导数,g(x) f(0)(1 x) f(1)x,则在[0,1]上(
(A)当f'(x) 0时,f(x) g(x)(C)当f (x) 0时,f(x) g(x)
)
1y1
,可知lim 1且lim(y x) limsin 0,所以有斜渐近线y x
x xx x xx
(B)当f'(x) 0时,f(x) g(x)(D)当f (x) 0时,f(x) g(x)
【分析】此题考查的曲线的凹凸性的定义及判断方法.
【详解1】如果对曲线在区间[a,b]上凹凸的定义比较熟悉的话,可以直接做出判断.如果对区间上任意两点x1,x2及常数0 1,恒有f (1 )x1 x2 (1 )f(x1) f(x2),则曲线是凸的.显然此题中x1 0,x2 1, x,则(1 )f(x1) f(x2) f(0)(1 x) f(1)x g(x),而
f (1 )x1 x
2014年考研数学一真题与解析
2014年考研数学一真题与解析
一、选择题
1—8小题.每小题4分,共32分.
1.下列曲线有渐近线的是
(A)y x sinx
(B)y x sinx
2
2
(C)y x sin
1x
(D)y x sin
1x
【分析】只需要判断哪个曲线有斜渐近线就可以.【详解】对于y x sin应该选(C)
2.设函数f(x)具有二阶导数,g(x) f(0)(1 x) f(1)x,则在[0,1]上(
(A)当f'(x) 0时,f(x) g(x)(C)当f (x) 0时,f(x) g(x)
)
1y1
,可知lim 1且lim(y x) limsin 0,所以有斜渐近线y x
x xx x xx
(B)当f'(x) 0时,f(x) g(x)(D)当f (x) 0时,f(x) g(x)
【分析】此题考查的曲线的凹凸性的定义及判断方法.
【详解1】如果对曲线在区间[a,b]上凹凸的定义比较熟悉的话,可以直接做出判断.如果对区间上任意两点x1,x2及常数0 1,恒有f (1 )x1 x2 (1 )f(x1) f(x2),则曲线是凸的.显然此题中x1 0,x2 1, x,则(1 )f(x1) f(x2) f(0)(1 x) f(1)x g(x),而
f (1 )x1 x
2019考研数学一真题及答案解析参考
http://www.qihang.com.cn 承载梦想 启航为来 只为一次考上研
2019年考研数学一真题
一、选择题,1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.
1.当x?0时,若x?tanx与xk是同阶无穷小,则k? A.1. C.3.
2.设函数f(x)??B.2. D.4.
?xx,x?0,?xlnx,x?0,则x?0是f(x)的
A.可导点,极值点. C.可导点,非极值点.
B.不可导点,极值点. D.不可导点,非极值点.
3.设?un?是单调增加的有界数列,则下列级数中收敛的是
uA.?n. n?1n?B.
?(?1)nn?1??1. un?un?C.??1??u??. n?1?n?1??D.
??un?12n?12. ?un?4.设函数Q(x,y)?x,如果对上半平面(y?0)内的任意有向光滑封闭曲线C都有2y?P(x,y)dx?Q(x,y)dy?0,那么函数P(x,y)可取为
Cx2
A.y?3.
y
C.
1x2B.?3. yyD.x?11?. xy1. y25.设A是3阶实对称矩阵,E是3阶单位矩阵.若A?A?2E,且A?4,则二次型
xTAx的规范形为
22
考研数学历年真题(1987-2011)年数学一
试题答案及解析请参见本人上传的其他资料!!!
1987年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)当x=_____________时,函数y?x?2x取得极小值.
(2)由曲线y?lnx与两直线y?e?1?x及y?0所围成的平面图形的面积是_____________.
x?1
(3)与两直线 y??1?t及x?11?y?21?z?11都平行且过原点的平面方程为_____________.
z?2?t
(4)设L为取正向的圆周x2?y2?9,则曲线积分??(2xy?2y)dx2L?(x?4x)dy= _____________.
(5)已知三维向量空间的基底为α1?(1,1,0),α2?(1,0,1),α3?(0,1,1),则向量β?(2,0,0)在此基底下的坐标是_____________.
二、(本题满分8分) 1xt2求正的常数a与b,使等式limx?0bx?sinx?2dt?1成立.
0a?t
三、(本题满分7分)
(1)设f、g为连续可微函数,u?f(x,xy),v?g(x?xy),求?u?x,?v?x. ?301?(2)设矩阵A和B满足关系式AB=
1999-2012数学一(答案2)
2001年考研数学一试题答案与解析
一、填空题
(1)【分析】 由通解的形式可知特征方程的两个根是r1,r2?1?i,从而得知特征方程为
2(r?r1)(r?r2)?r2?(r1?r2)r?rr12?r?2r?2?0.
由此,所求微分方程为
y''?2y'?2y?0.
(2)【分析】 先求gradr.
gradr=???r?r?r??xyz?,,???,,?. ?x?y?z??rrr???x?y?z()?()?() ?xr?yr?zr1x21y21z23x2?y2?z22?. =(?3)?(?3)?(?3)??rrrrrrrr3r22|(1,?2,2)?. r3再求 divgradr=
于是
divgradr|(1,?2,2)=
(3)【分析】 这个二次积分不是二重积分的累次积分,因为?1?y?0时
1?y?2.由此看出二次积分?dy??10?12021?yf(x,y)dx是二重积分的一个累次
积分,它与原式只差一个符号.先把此累次积分表为
?
dy?1?yf(x,y)dx???f(x,y)dxdy.
D由累次积分的内外层积分限可确定积分区域D:
?1?y?0,1?y?x?2.
见图.现可交换积分次序
原式=??0?1dy?21?yf(
2010年考研数学一真题及答案
2010年考研数学一真题
一、选择题(1~8小题,每小题4分,共32分。下列每题给出的四个选项中,只有一个选项是符合题目要求的。)
(1)极限lim
x→∞[x2
(x?a)(x+b)
]x=
(A)1 (B)e (C)e a?b(D)e b?a 【考点】C。
【解析】
【方法一】
这是一个“1∞”型极限
lim x→∞[x2
(x?a)(x+b)
]x=lim
x→∞
{[1+(a?b)x+ab
(x?a)(x+b)
]
(x?a)(x+b)
(a?b)x+ab}
(a?b)x+ab
(x?a)(x+b)
x=e a?b
【方法二】
原式=lim
x→∞e xln
x2
(x?a)(x+b)
而lim
x→∞ xln x2
(x?a)(x+b)
=lim
x→∞
xln(1+(a?b)x+ab
(x?a)(x+b)
)
=lim
x→∞
x?(a?b)x+ab
(x?a)(x+b)
(等价无穷小代换) =a?b
则lim
x→∞[x2
(x?a)(x+b)
]x=e a?b
【方法三】
对于“1∞”型极限可利用基本结论:
若limα(x)=0, limβ(x)=0,且limα(x)β(x)=A 则li m(1+α(x))β(x)=e A,求极限
由于lim
x→∞α(x)β(x)=lim
x→∞
x2?(x?a)(x+b)
(x?a)(x+