工程数学概率论答案同济大学
“工程数学概率论答案同济大学”相关的资料有哪些?“工程数学概率论答案同济大学”相关的范文有哪些?怎么写?下面是小编为您精心整理的“工程数学概率论答案同济大学”相关范文大全或资料大全,欢迎大家分享。
15-16(1)-a同济大学概率论期末
2015-2016学年第一学期《概率论与数理统计》期终考试试卷(A卷)--1
一、填空题(16分)
1、(4分)设A,B为两个随机事件,0?P(A)?1,0?P(B)?1.若事件A,B相互独立,则
P(AB)?PAB? ; 若事件A是事件B的对立事件,则P(AB)?PAB? .
2、(4分)设A,B为两个随机事件,若P(A)?0.3,P(B)?0.4,P?A?B??0.5,则
????P(AB)= , PBA?B= . 3、(8分)设X1,X2是取自正态总体N(?,?2)的简单随机样本,Y1?X1?X2,Y2???X1?X2,则协方差
c(Y1?2?)Y2Cov(Y1,Y2)= ,已知(Y1,Y2)服从二维正态分布,如果c为非零常数,则当c= 时,
服从自由度为 的 分布.
二、(10分) 乒乓球在未使用前称为新球,使用后就称为旧球.在袋中有10个乒乓球,其中8个新球.第一次比赛时从袋中任取二球作为比赛用球,比赛后把球仍放回袋中,第二次比赛时再从袋中任取二球作为比赛用球.(1)求第二次比赛取出的球都是新球的概率;(2)如果已知第
15-16(1)-a同济大学概率论期末
2015-2016学年第一学期《概率论与数理统计》期终考试试卷(A卷)--1
一、填空题(16分)
1、(4分)设A,B为两个随机事件,0?P(A)?1,0?P(B)?1.若事件A,B相互独立,则
P(AB)?PAB? ; 若事件A是事件B的对立事件,则P(AB)?PAB? .
2、(4分)设A,B为两个随机事件,若P(A)?0.3,P(B)?0.4,P?A?B??0.5,则
????P(AB)= , PBA?B= . 3、(8分)设X1,X2是取自正态总体N(?,?2)的简单随机样本,Y1?X1?X2,Y2???X1?X2,则协方差
c(Y1?2?)Y2Cov(Y1,Y2)= ,已知(Y1,Y2)服从二维正态分布,如果c为非零常数,则当c= 时,
服从自由度为 的 分布.
二、(10分) 乒乓球在未使用前称为新球,使用后就称为旧球.在袋中有10个乒乓球,其中8个新球.第一次比赛时从袋中任取二球作为比赛用球,比赛后把球仍放回袋中,第二次比赛时再从袋中任取二球作为比赛用球.(1)求第二次比赛取出的球都是新球的概率;(2)如果已知第
概率论与数理统计 朱开永 同济大学出版社习题一答案
习 题 一
1.下列随机试验各包含几个基本事件?
(1)将有记号a,b的两只球随机放入编号为Ⅰ,Ⅱ,Ⅲ 的盒子里(每个盒子可容纳两个球) 解:用乘法原理,三个盒子编号为Ⅰ,Ⅱ,Ⅲ看作不动物,。两个球看作是可动物,一个
1一个地放入盒中;a球可放入的任一个,其放法有 C3?3 种,b球也可放入三个盒子的111任一个,其放法有C3?C3?9种。 ?3 种,由乘法原理知:这件事共有的方法数为C3(2)观察三粒不同种子的发芽情况。
解:用乘法原理,三粒种子,每一粒种子按发芽与否是两种不同情况(方法)。三粒种子
111发芽共有C2?C2?C2?8种不同情况。
(3)从五人中任选两名参加某项活动。
解:从五人中任选两名参加某项活动,可不考虑任选的两人的次序,
2所以此试验的基本事件个数 n?C5?10。
(4)某人参加一次考试,观察得分(按百分制定分)情况。
解:此随机试验是把从0到100 任一种分看作一个基本事件,?n?101。 (5)将a,b,c三只球装入三只盒子中,使每只盒子各装一只球。
解:可用乘法原理:三只盒子视为不动物,可编号Ⅰ,Ⅱ,Ⅲ,三只球可视为可动物,一
1个一个放入盒子内(按要求)。a球可放入三个盒子中的任一个有C3?3种方法。b球因
为试
概率论答案
习题二答案
1.随机变量的分布函数、分布律、密度函数有何联系与区别?
答:随机变量的分布刻画了随机变量的取值规律,不管是连续型、离散型或既不是连续型,也不是离散型随机变量都可用分布函数来描述其取值的规律;而分布律只用来描述离散型随机变量的取值规律;密度函数只能来描述连续型随机变量的取值规律。它们的联系在于当知道了X的分布律,可通过求概率
(x取任意的值)求得X的分布函数
;
仅之亦然。当知道了连续型随机变量的密度函数积分可通过对
求导,即求得密度函数
,可通过
,
,求得分布函数
(对一切
2. 同时掷两枚骰子,求两枚骰子的点数之和X 的概率分布,并计算P{X≤3}和P{X>13}.
解:由题意X的正概率点为2,3,?12
, k=2,3,?12
3. 某产品共17件,其中有次品3件,现从中任取5件,求抽得次品数X 的概率分布,并计算P{1≤X<2} 解:
,
4. 一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号显示的时间相等,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布 解:X 的可能取值为0,1,2,3 车在第i个路口首次遇到红灯
概率论答案
习题二答案
1.随机变量的分布函数、分布律、密度函数有何联系与区别?
答:随机变量的分布刻画了随机变量的取值规律,不管是连续型、离散型或既不是连续型,也不是离散型随机变量都可用分布函数来描述其取值的规律;而分布律只用来描述离散型随机变量的取值规律;密度函数只能来描述连续型随机变量的取值规律。它们的联系在于当知道了X的分布律,可通过求概率
(x取任意的值)求得X的分布函数
;
仅之亦然。当知道了连续型随机变量的密度函数积分可通过对
求导,即求得密度函数
,可通过
,
,求得分布函数
(对一切
2. 同时掷两枚骰子,求两枚骰子的点数之和X 的概率分布,并计算P{X≤3}和P{X>13}.
解:由题意X的正概率点为2,3,?12
, k=2,3,?12
3. 某产品共17件,其中有次品3件,现从中任取5件,求抽得次品数X 的概率分布,并计算P{1≤X<2} 解:
,
4. 一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号显示的时间相等,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布 解:X 的可能取值为0,1,2,3 车在第i个路口首次遇到红灯
概率论答案
习题二答案
1.随机变量的分布函数、分布律、密度函数有何联系与区别?
答:随机变量的分布刻画了随机变量的取值规律,不管是连续型、离散型或既不是连续型,也不是离散型随机变量都可用分布函数来描述其取值的规律;而分布律只用来描述离散型随机变量的取值规律;密度函数只能来描述连续型随机变量的取值规律。它们的联系在于当知道了X的分布律,可通过求概率
(x取任意的值)求得X的分布函数
;
仅之亦然。当知道了连续型随机变量的密度函数积分可通过对
求导,即求得密度函数
,可通过
,
,求得分布函数
(对一切
2. 同时掷两枚骰子,求两枚骰子的点数之和X 的概率分布,并计算P{X≤3}和P{X>13}.
解:由题意X的正概率点为2,3,?12
, k=2,3,?12
3. 某产品共17件,其中有次品3件,现从中任取5件,求抽得次品数X 的概率分布,并计算P{1≤X<2} 解:
,
4. 一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号显示的时间相等,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布 解:X 的可能取值为0,1,2,3 车在第i个路口首次遇到红灯
概率论答案
概率论与数理统计习题解答 第一章 随机事件及其概率 12 二维随机变量的数字特征·切比雪夫不等式与大数定律
一、设二维随机变量(X,Y)的联合概率密度为
f?x,y??A?x2?y?12?2 .
求:(1)系数A;(2)数学期望E(X)及E(Y),方差D(X)及D(Y),协方差cov(X,Y). 解: (1) 由??????????f(x,y)dxdy?1. 有
A2???x?????????y?12?2dxdy?A?2?0d???r0??r2?1?2dr??A?1
解得, A?1?.
(2) E(X)???????????xf(x,y)dxdy???1????dy???x???x2?y?12?2dx?0.
由对称性, 知 E(Y)?0. D(X)?E[(X?EX)]?EX22???????0??????xf(x,y)dxdy?221??????dy???x222???x12?y?1???dx
?1??2?0d????r320?r2?1?dr?2?r(1?r)?r?r??2?1?2dr?[ln(1?r)
概率论答案
习题二答案
1.随机变量的分布函数、分布律、密度函数有何联系与区别?
答:随机变量的分布刻画了随机变量的取值规律,不管是连续型、离散型或既不是连续型,也不是离散型随机变量都可用分布函数来描述其取值的规律;而分布律只用来描述离散型随机变量的取值规律;密度函数只能来描述连续型随机变量的取值规律。它们的联系在于当知道了X的分布律,可通过求概率
(x取任意的值)求得X的分布函数
;
仅之亦然。当知道了连续型随机变量的密度函数积分可通过对
求导,即求得密度函数
,可通过
,
,求得分布函数
(对一切
2. 同时掷两枚骰子,求两枚骰子的点数之和X 的概率分布,并计算P{X≤3}和P{X>13}.
解:由题意X的正概率点为2,3,?12
, k=2,3,?12
3. 某产品共17件,其中有次品3件,现从中任取5件,求抽得次品数X 的概率分布,并计算P{1≤X<2} 解:
,
4. 一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号显示的时间相等,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布 解:X 的可能取值为0,1,2,3 车在第i个路口首次遇到红灯
概率论课后答案
第 一 章 习 题 一
1(4)解:设B1=“两件都是不合格品”,B2=“一件是合格品,另一件是不合格品”,A=“已知所取两件中有一件是不合格品”,则A?B1?B2,由题意知,
12C6C4282P(B1)?2?,P(B1)?2?,P(A)?P(B1)?P(B2)?
C1015C10153C42故P{B1 |A}=
P(AB1)P(A)?P(B1)P(A)?2/151? 2/353. 解:A:表示两个一级队被分在不同组,则A:表示两个一级队被分在同一组
P(A)?C2C18C201019?0.526,P(A)?1?P(A)?0.474
5.解:设一段长为x,另一段长为y,样本空间?:0?x?a,0?y?a,0?x?y?a,
a?0?x??2?a? 0?y??2??x?y?(a?x?y)??所求事件满足:
从而所求概率=S?CDES?OAB?14.
X,Y,样本空间占
6.解:设所取两数为
4S(?)?S(D)1?S(D)P??S(?)11有区域?,
两数之积小于1:XY?1,故所求概率
4,
,故所求概
4)而
S(
概率论答案05
《概率论》计算与证明题
第5章 极限定理
1、?为非负随机变量,若Eea???(a?0),则对任意x?o,P{??x}?e?axEea?。
2、若h(x)?0,?为随机变量,且Eh(?)??,则关于任何c?0,
P{h(?)?c}?c?1Eh(?)。
4、{?k}各以
平均值?
6、验证概率分布如下给定的独立随机变量序列是否满足马尔可夫条件:
(1)P{Xk??2}?k1ss概率取值k和?k,当s为何值时,大数定律可用于随机变量序列?1,2,?n,的算术
1; 2k?(2k?1),P{Xk?0}?1?2?2k; (2)P{Xk??2}?21?1?12(3)P{Xk??2}?k,P{Xk?0}?1?k2。
2k7、若?k具有有限方差,服从同一分布,但各k间,?k和?k?1有相关,而?k,?1(|k?l|?2)是独立的,
证明这时对{?k}大数定律成立。 8、已知随机变量序列?1,?2,对{?k}成立大数定律。 9、对随机变量序列{?i},若记?n?的方差有界,D?n?c,并且当|i?j|??时,相关系数rij?0,证明
1(?1?n1??n),an?(E?1?n?E?n),则{?i}服从大数定律
?(?n?an)2??0。 的充要条件是limE?2?n?