运用数学史的教学设计
“运用数学史的教学设计”相关的资料有哪些?“运用数学史的教学设计”相关的范文有哪些?怎么写?下面是小编为您精心整理的“运用数学史的教学设计”相关范文大全或资料大全,欢迎大家分享。
数学史运用到中学数学教学中的体会
数学史运用到中学数学教学中的体会
天津五中——宗琦
数学史在高中数学教学中有很大的作用,新课程改革几年来,数学教学一个很重要的环节就是情境的设置,如何引入一堂课。而对目前学生的学习状况来讲,如何让学生喜欢学数学也是数学教师面临的一个问题。数学史的学习和运用无疑给教师提供了一个很好的工具。经过了几年的工作,我在数学教学中也或多或少的运用到了一些数学史的知识。比如高二数学必修二,我们在讲直线、园这两章内容的时候,我们要注重对学生解析几何思想的训练,想让学生体会“形”与“数”的联系,“形”变则“数”变,“形”所具有的特征在“数”上都能有所体现。这一点说起来很简单,但是有很多学生都曾经问过我,“为什么要建立坐标系?”“为什么要这样去研究?这多麻烦啊?”。而且随着椭圆、双曲线、抛物线的学习,学生们的学习兴趣一点点就被复杂繁琐的计算磨灭。这时候我就尝试用数学史的小故事去吸引学生,让学生产生学习的兴趣。
“据说有一天,法国哲学家、数学家笛卡尔生病卧床,病情很重,尽管如此他还反复思考一个问题:几何图形是直观的,而代数方程是比较抽象的,能不能把几何图形与代数方程结合起来,也就是说能不能用几何图形来表示方程呢?要想达到此目的,关键是如何把组成几何
《数学史》教学大纲
《数学史》课程教学大纲
课程名称:数学史
英文名称:History of Mathematics 课程编码:0741122030
学时数:72 适用专业:数学与应用数学
一、课程的性质、目的和任务
数学史是数学与应用数学专业必修的重要基础课程之一。任何一门科学都有它自己的产生和发展的历史,数学史就是研究数学的发生、发展过程及其规律的一门学科。它主要讨论的是数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。数学是非常古老而又有着巨大发展潜力的科学,其历史的足迹也就更漫长而艰辛。数学的每一阶段性成果都有着它的产生背景:为何提出,如何解决,如何进一步改进。这其中体现的思想方法或思维过程对数学专业的学生,甚至是对教师来说,无论是知识的丰富,还是其创造能力的发挥都是重要的。
讲授本课程要贯彻“夯实基础,拓宽视野,培养能力,提高素质”的教育方针,依据“有用、有效、先进”的教改指导原则,对原教材要进行彻底清理,重点放在培养学生的实践能力和创新能力上,同时深刻理解本课程与初等数学的内在联系以指导中学数学的教学。
二、本课程与其它课程的关系
本课程是线性代数、
数学史
参考书目:
1、M?克莱因著:《古今数学思想》; 2、鲍尔加尔斯基著:《数学简史》; 3、梁宗巨著:《世界数学史简编》; 4、李 迪著:《中国数学史简编》.
绪论:学习与研究数学史的意义
? 对数学科学有一个整体的认识; ? 可帮助找到最根本的教学方法;
? 是进行辩证唯物主义、历史唯物主义和爱国主义教育的素
材;
? 是数学课程改革与发展的需要。
法国著名数学家庞加莱曾说过:“如果我们想要预知数学的未来,最适合的途径就是研究数学这门科学的历史和现状.”本课程以数学发展的脉络为主线,系统介绍数学科学的历史,并对其一些重要的思想方法进行探讨.
1.1 古埃及的数学
1.1.1 古埃及的记数制与算术
1.1.3 古埃及的几何学
? 古埃及人知道:
? 任何三角形的面积均为底与高的乘积的一半;
? 圆的面积等于直径的的平方,由此可知,他们把圆周率近似地取为3.16; ? 直圆柱的体积为底面积与高的乘积. ? 古埃及数学中“最伟大的埃及金字塔”:
1.2 古巴比伦的数学
古巴比伦,又称美索波大米亚,位于亚洲西部的幼发拉底与底格里斯两河流域. 公元前2000年左右
数学史
参考书目:
1、M?克莱因著:《古今数学思想》; 2、鲍尔加尔斯基著:《数学简史》; 3、梁宗巨著:《世界数学史简编》; 4、李 迪著:《中国数学史简编》.
绪论:学习与研究数学史的意义
? 对数学科学有一个整体的认识; ? 可帮助找到最根本的教学方法;
? 是进行辩证唯物主义、历史唯物主义和爱国主义教育的素
材;
? 是数学课程改革与发展的需要。
法国著名数学家庞加莱曾说过:“如果我们想要预知数学的未来,最适合的途径就是研究数学这门科学的历史和现状.”本课程以数学发展的脉络为主线,系统介绍数学科学的历史,并对其一些重要的思想方法进行探讨.
1.1 古埃及的数学
1.1.1 古埃及的记数制与算术
1.1.3 古埃及的几何学
? 古埃及人知道:
? 任何三角形的面积均为底与高的乘积的一半;
? 圆的面积等于直径的的平方,由此可知,他们把圆周率近似地取为3.16; ? 直圆柱的体积为底面积与高的乘积. ? 古埃及数学中“最伟大的埃及金字塔”:
1.2 古巴比伦的数学
古巴比伦,又称美索波大米亚,位于亚洲西部的幼发拉底与底格里斯两河流域. 公元前2000年左右
浅谈数学史与初中数学教学的结合
浅谈数学史与初中数学课堂教学的结合
万州桥亭中学 秦 毅 内容摘要:
为了适应现代教育的需要,在现今的教育与教学过程中穿插一些数学史的有关轶闻趣事,能够激发学生对相关内容产生好奇心,活跃课堂气氛,调动学生学习数学的积极性。学习数学史,不仅是广大学生学好数学的有力帮助,而且是也是我们中学数学教师提高自身素养、更好的搞好教学工作所必需的。我们广大教师不仅要明白数学史的重要性,最根本的是要研究如何将数学史融合到教学当中,努力探索出一条新型的教学模式,以提高学生的数学能力和综合素质。
关键词: 数学 数学史
一、 引言
数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。数学史是研究数学科学发生发展及其规律的学科,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。
数学史研究已具有很长的历史,如何在数学教育中运用数学史的知
数学史概论
《数学史概论》教学大纲
课程编号:024ZX002
课程名称(中文):数学史概论 课程名称(英文): 学分:3 总学时: 54 适应专业:数学与应用数学(选修)
先修课程:数学分析,高等代数,概率统计
实验学时:
一、课程的性质和任务
数学史是师范本科数学专业必修的重要基础课程之一。任何一门科学都有它自己的产生和发展的历史,数学史就是研究数学的发生、发展过程及其规律的一门学科。它主要讨论的是数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。数学是非常古老而又有着巨大发展潜力的科学,其历史的足迹也就更漫长而艰辛。数学的每一阶段性成果都有着它的产生背景:为何提出,如何解决,如何进一步改进。这其中体现的思想方法或思维过程对数学专业的学生,甚至是对教师来说,无论是知识的丰富,还是其创造能力的发挥都是重要的。
讲授本课程要贯彻“夯实基础,拓宽视野,培养能力,提高素质”的教育方针,依据“有用、有效、先进”的教改指导原则,对原教材要进行彻底清理,重点放在培养学生的实践能力和创新能力上,同时深刻理解本课程与初等数学的内在联系以指导中学数学的教学。
二、课程基本要求
数学史研究的主要对象是历史上的数学成果和影响数学发展的
中国数学史
中国数学史
研究中国数学的发展规律的科学;中国数学史的研究对象是中国历代的数学成果、数学学术活动、数学思想、数学的历史背景以及一切记录等。根据易·系辞》记载,\上古结绳而治,后世圣人易之以书契。这说明上古时候,先有结绳记事或记数,然后易之以企刻,三国时代虞翮《易九家义》也说:事大,大结其绳;事小,小结其绳;结之多少,随物众寡。不但有很多书籍上有结绳、企刻的记载,而近代也发现不少原始社会遗留下来的实物,因此可以说《易·系辞》的记载是可以信的。这也说明中国数学史从原始社会就开始了记数的工作。许多出土的原始社会的陶器上,可以发现刻画着很多不同的几何图形和数字符号,有菱形、圆形、鱼形、矩形、三角形等、还有一、五、七、十、二十、三十等数目字。通过这些实物,说明在原始社会就形成了初步几何图形及数字的概念。
因此可以说中国数学起源于原始社会,而中国数学史则也是起源于原始社会。随着时间的推移,到殷商、西周时代,由甲骨、青铜器皿上,可以发现许多数学资料,不但有完整的整数及部分分数记录,还有简单的数字运算。这说明到殷商、西周时代,已积累了很多数学知识,所可惜的是,尚没有发现有关的书籍。
从春秋到西汉末期,在一些典籍中记载着丰富的数学内容。例如,《周易
数学史习题
数学史思考题6
一、选择题
1.最早使用“函数”(function)这一术语的数学家是( A )。
A.莱布尼茨 B.约翰·贝努利 C.雅各布·贝努利 D.欧拉 2.首先引进函数符号f(x)的数学家是( A )
A.欧拉 B.韦达 C.柯西 D.莱布尼茨
3.“变量的函数是一个由该变量与一些常数以任何方式组成的解析表达式。”这个函数定义在18世纪后期占据了统治地位,给出这个函数定义的数学家是( C )
A.莱布尼茨 B.约翰·贝努利 C.欧拉 D.狄利克雷
4.首先引进如下一批符号:f(x)-函数符号;∑-求和号;e-自然对数底;i-虚数单位的数学家是( B )
A.泰勒 B.欧拉 C.麦克劳林 D.莱布尼茨
6.“纯数学的对象是现实世界的空间形式与数量关系。”给出这个关于数学本质的论述的人是( B )
A.笛卡尔 B.恩格斯 C.康托 D.罗素 7.微积分创立于( C )
A.15世纪
数学史考试的习题
西华师范大学数学史题库——不断更新中??
数学史概论期末试题一
一、单项选择题
1.世界上第一个把π 计算到3.1415926<n <3.1415927 的数学家是( B ) A.刘徽 B.祖冲之 C.阿基米德 D.卡瓦列利 2.我国元代数学著作《四元玉鉴》的作者是( C )A.秦九韶 B.杨辉 C.朱世杰 D.贾宪
3.就微分学与积分学的起源而言( A ) A.积分学早于微分学 B.微分学早于积分学 C.积分学与微分学同期 D.不确定 4.在现存的中国古代数学著作中,最早的一部是( D ) A.《孙子算经》 B.《墨经》 C.《算数书》 D.《周髀算经》 5.简单多面体的顶点数V、面数F及棱数E间有关系V+F-E=2这个公式叫( D )。 A.笛卡尔公式 B.牛顿公式 C.莱布尼茨公式 D.欧拉公式
6.中国古典数学发展的顶峰时期是( D )。 A.两汉时期 B.隋唐时期 C.魏晋南北朝时期 D.宋元时期
7.最早使用“函数”(function)这一术语的数学家是( A )。 A.莱布尼茨 B.约翰·伯努利 C.雅各布·伯努利 D.欧拉 8.1834 年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学家是( B )
中国数学史
中国数学史
研究中国数学的发展规律的科学;中国数学史的研究对象是中国历代的数学成果、数学学术活动、数学思想、数学的历史背景以及一切记录等。根据易·系辞》记载,\上古结绳而治,后世圣人易之以书契。这说明上古时候,先有结绳记事或记数,然后易之以企刻,三国时代虞翮《易九家义》也说:事大,大结其绳;事小,小结其绳;结之多少,随物众寡。不但有很多书籍上有结绳、企刻的记载,而近代也发现不少原始社会遗留下来的实物,因此可以说《易·系辞》的记载是可以信的。这也说明中国数学史从原始社会就开始了记数的工作。许多出土的原始社会的陶器上,可以发现刻画着很多不同的几何图形和数字符号,有菱形、圆形、鱼形、矩形、三角形等、还有一、五、七、十、二十、三十等数目字。通过这些实物,说明在原始社会就形成了初步几何图形及数字的概念。
因此可以说中国数学起源于原始社会,而中国数学史则也是起源于原始社会。随着时间的推移,到殷商、西周时代,由甲骨、青铜器皿上,可以发现许多数学资料,不但有完整的整数及部分分数记录,还有简单的数字运算。这说明到殷商、西周时代,已积累了很多数学知识,所可惜的是,尚没有发现有关的书籍。
从春秋到西汉末期,在一些典籍中记载着丰富的数学内容。例如,《周易