高二排列组合典型例题

“高二排列组合典型例题”相关的资料有哪些?“高二排列组合典型例题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高二排列组合典型例题”相关范文大全或资料大全,欢迎大家分享。

排列组合典型例题

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

典型例题一

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?

分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下:

如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二.

如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三.

如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四.

解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3

3个来排列,故有A9个;

当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一

11个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有A4. ?A8?A82(个)

∴ 没有重复数字的四位偶数有

311 A9?A4?A8?A82?504?179?2229个.6

3 解法2:当个位数上排“0”时,同解一有A9个;当个位数上排2

9排列组合二项式定理概率统计

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

2009届高三数学二轮专题复习教案 排列组合二项式定理概率统计 一、本章知识结构: 排列概念 排列 两 排列数公式 个 计 组合概念 数 组合 组合数公式 排列组合 二项式定理 组合数性质 二通项公式 项 式 定二项式系数性质 应用 应用

二、重点知识回顾 1.排列与组合

? 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理

和分步有关,分类计数原理与分类有关.

? 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题. ? 排列与组合的主要公式

mAn?①排列数公式:

nAnn!?n(n?1)???(n?m?1)(n?m)! (m≤n)

=n! =n(n―1)(n―2) ·?·2·1.

mCn?②组合数公式:

n!n(n?1)???(n?m?1)?m!(n?m)!m?(m?1)?????2?1 (m≤n).

mn?m012nnC?CC?C?C?????C?2nnnn③组合数性质:①n(m≤n). ②n 02413n?1C?C?C????

10.2排列、组合

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

10.2 排列、组合

2013?考纲下载

1.理解排列、组合的概念.

2.能利用计数原理推导排列数公式、组合数公式. 3.能解决简单的实际问题. 请注意!

1.排列、组合问题每年必考.

2.以实际问题为背景,考查排列数、组合数,同时考查分类讨论的思想及解决问题的能力.

3.以选择、填空的形式考查,或在解答题中和概率相结合进行考查. 课本导读

1.两个概念

(1)排列

从n个不同元素中取出m个元素(m≤n),按照 一定顺序排成一列 ,叫做从n个不同元素中取出m个元素的一个排列.

(2)组合

从n个元素中取出m个元素 并成一组 ,叫做从n个不同元素中取出m个元素的一个组合.

2.两个公式 (1)排列数公式

n!Am. n= n(n-1)(n-2)?(n-m+1) =?n-m?!

规定0!= 1 .

(2)组合数公式 Cmn==

n?n-1??n-2???n-m+1?

m!

n!

.

m!?n-m?!

规定C0n= 1 . 3.组合数的两个性质

mnm

(1)Cn=Cn;

mm-1m(2)Cn+Cn. +1=Cn

教材回归

1.(2013·衡水调研卷)从1,2,3,4,5,6六个数字中,选出一个偶数

3、3排列组合特殊问题解析

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

排列组合特殊问题解析

一、有重复问题

下列两例题尝试分类讨论列出所有类别。

例1、从3,4,5,6,7五个数字中,任意有放回地连续抽取三个数字,求下列事件的概率:

(1)三个数字完全不同; (2)三个数字中含3或5。 (3)三个数字中含3和5。

例2、(1)从5本不同的书中选3本送给3名同学,每人各1本,共有多少种不同的送法?

(2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?

二、分堆问题

例3、6本不同的书,按照以下要求处理,各有几种分法? ⑴ 一堆一本,一堆两本,一堆三本; ⑵ 甲得一本,乙得两本,丙得三本; ⑶ 一人得一本,一人得二本,一人得三本; ⑷ 平均分给甲、乙、丙三人; ⑸ 平均分成三堆.

例4、有6本不同的书

(1)分给甲1本、乙1本、丙4本,有多少种不同的分配方法? (2)分成3堆,有2堆各一本,另一堆4本,有多少种不同的分堆方法? (3)摆在3层书架上,每层2本,有多少种不同的摆法?

例5、按下列要求把12个人分成3个小组,各有多少种不同的分法? (1)各组人数分别为2,4,6人; (2)平均分成3个小组;

(3)平均分成3个小组,进入3个不同车间。

3、3排列组合特殊问题解析

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

排列组合特殊问题解析

一、有重复问题

下列两例题尝试分类讨论列出所有类别。

例1、从3,4,5,6,7五个数字中,任意有放回地连续抽取三个数字,求下列事件的概率:

(1)三个数字完全不同; (2)三个数字中含3或5。 (3)三个数字中含3和5。

例2、(1)从5本不同的书中选3本送给3名同学,每人各1本,共有多少种不同的送法?

(2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?

二、分堆问题

例3、6本不同的书,按照以下要求处理,各有几种分法? ⑴ 一堆一本,一堆两本,一堆三本; ⑵ 甲得一本,乙得两本,丙得三本; ⑶ 一人得一本,一人得二本,一人得三本; ⑷ 平均分给甲、乙、丙三人; ⑸ 平均分成三堆.

例4、有6本不同的书

(1)分给甲1本、乙1本、丙4本,有多少种不同的分配方法? (2)分成3堆,有2堆各一本,另一堆4本,有多少种不同的分堆方法? (3)摆在3层书架上,每层2本,有多少种不同的摆法?

例5、按下列要求把12个人分成3个小组,各有多少种不同的分法? (1)各组人数分别为2,4,6人; (2)平均分成3个小组;

(3)平均分成3个小组,进入3个不同车间。

9排列组合、二项式定理、概率及统计

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

排列组合、二项式定理、概率及统计

一、复习策略

排列与组合是高中数学中从内容到方法都比较独特的一个组成部分,是进一步学习概率论的基础知识,该部分内容,不论其思想方法和解题都有特殊性,概念性强,抽象性强,思维方法新颖,解题过程极易犯“重复”或“遗漏”的错误,并且结果数目较大,无法一一检验,因此给考生带来一定困难.解决问题的关键是加深对概念的理解,掌握知识的内在联系和区别,科学周全的思考、分析问题.

二项式定理是进一步学习概率论和数理统计的基础知识,把握二项展开式及其通项公式的相互联系和应用是重点.

概率则是概率论入门,目前的概率知识只是为进一步学习概率和统计打好基础,做好铺垫.学习中要注意基本概念的理解,要注意与其他数学知识的联系,要通过一些典型问题的分析,总结运用知识解决问题的思维规律.

纵观近几年高考,排列、组合、二项式定理几乎每年必考,考题多以选择题、填空题出现,题小而灵活,涉及知识点都在两三个左右,综合运用排列组合知识,分类计数和分步计数原理;二项式定理及二项式系数的性质计算或论证一些较简单而有趣的小题也在高考题中常见,概率及概率统计的内容,从近几年新课程卷高考来看,每年都有一道解答题,占12分左右.

排列与组合的应

9排列组合、二项式定理、概率及统计

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

排列组合、二项式定理、概率及统计

一、复习策略

排列与组合是高中数学中从内容到方法都比较独特的一个组成部分,是进一步学习概率论的基础知识,该部分内容,不论其思想方法和解题都有特殊性,概念性强,抽象性强,思维方法新颖,解题过程极易犯“重复”或“遗漏”的错误,并且结果数目较大,无法一一检验,因此给考生带来一定困难.解决问题的关键是加深对概念的理解,掌握知识的内在联系和区别,科学周全的思考、分析问题.

二项式定理是进一步学习概率论和数理统计的基础知识,把握二项展开式及其通项公式的相互联系和应用是重点.

概率则是概率论入门,目前的概率知识只是为进一步学习概率和统计打好基础,做好铺垫.学习中要注意基本概念的理解,要注意与其他数学知识的联系,要通过一些典型问题的分析,总结运用知识解决问题的思维规律.

纵观近几年高考,排列、组合、二项式定理几乎每年必考,考题多以选择题、填空题出现,题小而灵活,涉及知识点都在两三个左右,综合运用排列组合知识,分类计数和分步计数原理;二项式定理及二项式系数的性质计算或论证一些较简单而有趣的小题也在高考题中常见,概率及概率统计的内容,从近几年新课程卷高考来看,每年都有一道解答题,占12分左右.

排列与组合的应

初中排列组合公式例题.

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

排列组合公式

复习排列与组合

考试内容:两个原理;排列、排列数公式;组合、组合数公式。

考试要求:1)掌握加法原理及乘法原理,并能用这两个原理分析和解决一些简单的问题。

2)理解排列、组合的意义。掌握排列数、组合数的计算公式,并能用它们解决一些简单的问题。 重点:两个原理尤其是乘法原理的应用。

难点:不重不漏。

知识要点及典型例题分析:

1.加法原理和乘法原理

两个原理是理解排列与组合的概念,推导排列数及组合数公式,分析和解决排列与组合的应用问题的基本原则和依据;完成一件事共有多少种不同方法,这是两个原理所要回答的共同问题。而两者的区别在于完成一件事可分几类办法和需要分几个步骤。

例1.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。

(1)若从这些书中任取一本,有多少种不同的取法?

(2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法?

(3)若从这些书中取不同的科目的书两本,有多少种不同的取法。

解:(1)由于从书架上任取一本书,就可以完成这件事,故应分类,由于有3种书,则分为3类然后依据加法原理,得到的取法种数是:3+5+6=14种。

(2)由于从书架上任取数学书、语文书、英语书各1本,需要分成3个步骤完成,据乘法原理,得到不

排列组合知识点和例题

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

1.分类计数原理: 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法, ,在第n类办法中有mn种不同的方法,那么完成这件事共有N= n1+n2+n3+ +nM种不同的方法.

2.分步计数原理:完成一件事,需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法, ,做第n步有mn种不同的方法,那么完成这件事共有N=n1·n2·n3· nM 种不同的方法.

注:分类计数原理和分步计数原理是排列组合的基础和核心,既可用来推导排列数、组合数公式,也可用来直接解题。它们的共同点都是把一个事件分成若干个分事件来进行计算。只不过利用分类计算原理时,每一种方法都独立完成事件;如需连续若干步才能完成的则是分步。利用分类计数原理,重在分“类”,类与类之间具有独立性和并列性;利用分步计数原理,重在分步;步与步之间具有相依性和连续性.比较复杂的问题,常先分类再分步。

3. 排列的定义:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元......素的一个排列.

排列数的定义: 从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不

高中排列组合知识点汇总及典型例题(全)

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

排列组合

一.基本原理

1.加法原理:做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一

m

列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为An. 1.公式:1.Anm n n 1 n 2

n m 1

n!

n m!

2. 规定:0! 1

(1)n! n (n 1)!,(n 1) n! (n 1)! (2) n n! [(n 1) 1] n! (n 1) n! n! (n 1)! n!; (3)n n 1 1 n 1 1 1 1

(n 1)!

(n 1)!

(n 1)!(n 1)!

n!(n 1)!

三.组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。

n n 1 n m 1 Amn!

1. 公式: C n

m!m!

n m!Amm

m

n

规定:Cn 1

01n

2.组合数性质: Cnm Cnn m,Cnm Cnm 1 Cnm 1,C