采样定理公式

“采样定理公式”相关的资料有哪些?“采样定理公式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“采样定理公式”相关范文大全或资料大全,欢迎大家分享。

采样定理简介

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

关于采样定理的介绍

一、采样定理简介

采样定理,又称香农采样定律、奈奎斯特采样定律,是信息论,特别是通讯与信号处理学科中的一个重要基本结论.E. T. Whittaker(1915年发表的统计理论),克劳德·香农 与Harry Nyquist都对它作出了重要贡献。另外,V. A. Kotelnikov 也对这个定理做了重要贡献。采样是将一个信号(即时间或空间上的连续函数)转换成一个数值序列(即时间或空间上的离散函数)。采样得到的离散信号经保持器后,得到的是阶梯信号,即具有零阶保持器的特性。如果信号是带限的,并且采样频率高于信号最高频率的一倍,那么,原来的连续信号可以从采样样本中完全重建出来。带限信号变换的快慢受到它的最高频率分量的限制,也就是说它的离散时刻采样表现信号细节的能力是非常有限的。采样定理是指,如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。大多数应用都要求避免混叠,混叠问题的严重程度与这些混叠频率分量的相对强度有关。

采样过程所应遵循的规律,又称取样定理、抽样定理。采样定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。

实验4时域采样理论与频域采样定理验证

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

六、程序清单和信号波形 1、时域采样理论的验证

程序清单:

% 时域采样理论验证程序

Tp=64/1000; %观察时间Tp=64微秒 %产生M长采样序列x(n) % Fs=1000;T=1/Fs; Fs=1000;T=1/Fs; M=Tp*Fs;n=0:M-1; f=n*Fs/M;

A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5; xn=A*exp(-alph*n*T).*sin(omega*n*T); Xk=T*fft(xn,M);%M点FFT[xnt)] subplot(3,1,1); plot(f,abs(Xk)); xlabel('f/Hz'); ylabel('|x1(jf)|');

title('x1(n)的幅度特性');

%====================================================================

%Fs=300Hz

Tp=64/1000; %观察时间Tp=64微秒 %产生M长采样序列x(n) % Fs=1000;T=1/Fs; Fs=300;T=1/Fs; M=Tp*Fs;n=0:M-1; f=n*Fs/M;

A=444.128;alp

余弦定理公式

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

4.6 正弦、余弦定理 解斜三角形

建构知识网络

1.三角形基本公式:

(1)内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC,

CA?BCA?B=sin, sin=cos

2222111(2)面积公式:S=absinC=bcsinA=casinB

222a?b?cS= pr =p(p?a)(p?b)(p?c) (其中p=, r为内切圆半径)

2cos

(3)射影定理:a = bcosC + ccosB;b = acosC + ccosA;c = acosB + bcosA 2.正弦定理:

abc???2R外 sinAsinBsinC证明:由三角形面积

111absinC?bcsinA?acsinB 222abc??得 sinAsinBsinCabc???2R 画出三角形的外接圆及直径易得:

sinAsinBsinCS?b2?c2?a23.余弦定理:a=b+c-2bccosA, cosA?;

2bc2

2

2

证明:如图ΔABC中,

CbaCH?bsinA,AH?bcosA,BH?c?bcosA

a2?CH2?BH2?b2sin2A?(c?bcosA)2?b?c?2bccosA22

AHcB当A、B是

初中数学定理公式汇总

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

初中必用的定理公式

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS

初中数学定理公式汇总

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

初中必用的定理公式

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS

小学数学算术定义定理公式

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

小学数学算术定义定理公式

1.加法交换律:两数相加交换加数的位置,和不变。

2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3.乘法交换律:两数相乘,交换因数的位置,积不变。

4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。

6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。

7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8.方程式:含有未知数的等式叫方程式。

9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通

弹塑性力学定理和公式

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

应力应变关系

弹性模量 || 广义虎克定律

1.弹性模量

对于应力分量与应变分量成线性关系的各向同性弹性体,常用的弹性常数包括: a 弹性模量 单向拉伸或压缩时正应力与线应变之比,即

b 切变模量 切应力与相应的切应变之比,即

c 体积弹性模量 三向平均应力

与体积应变θ(=εx+εy+εz)之比,即

d 泊松比 单向正应力引起的横向线应变ε

1

的绝对值与轴向线应变ε的绝对值之比,即

此外还有拉梅常数λ。对于各向同性材料,这五个常数中只有两个是独立的。常用弹性常数之间的关系见表3-1 弹性常数间的关系。室温下弹性常数的典型值见表3-2 弹性常数的典型值。

2.广义虎克定律

线弹性材料在复杂应力状态下的应力应变关系称为广义虎克定律。它是由实验确定,通常称为物性方程,反映弹性体变形的物理本质。

A 各向同性材料的广义虎克定律表达式(见表3-3 广义胡克定律表达式) 对于圆柱坐标和球坐标,表中三向应力公式中的x 、y、z分别用r、θ、z和r、θ、θ代替。对于平面极坐标,表中平面应力和平面应变公式中的x、y、z用r、θ、z代替。

B 用偏量形式和体积弹性定律

线性代数公式定理总结

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

1 / 35

第一章 行列式

1.逆序数 1.1 定义

n个互不相等的正整数任意一种排列为:i1i2???in,规定由小到大为标准次序,当某两个元素的先后次序与标准次序不

同时,就说有一个逆序数,该排列全部逆序数的总合用?数字的个数之和。 1.2 性质

一个排列中任意两个元素对换,排列改变奇偶性,即 ?2证明如下:

设排列为a1?alab1?bmbc1?cn,作m次相邻对换后,变成a1?alabb1?bmc1?cn,再作m?1次相邻对换后,变成a1?albb1?bmac1?cn,共经过2m?1次相邻对换,而对不同大小的两元素每次相邻对换逆序数要么增加1 ,要么减少1 ,相当于?2故原命题成立。

2.n阶行列式的5大性质

性质1:转置(行与列顺次互换)其值不变。 性质2:互换任意两行(列)其值变号。

性质3:任意某行(列)可提出公因子到行列式符号外。 性质4:任意行列式可按某行(列)分解为两个行列式之和。 性质5:把行列式某行(列)?倍后再加到另一行(列),其值不变。

行列式的五大性质全部可通过其定义证明;而以后对行列式的运算主要是利用这五个性质。

评 注 对性质4的重要拓展: 设n阶同型矩阵,

n?i1i2???in?表示,??

弹塑性力学定理和公式

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

应力应变关系

弹性模量 || 广义虎克定律

1.弹性模量

对于应力分量与应变分量成线性关系的各向同性弹性体,常用的弹性常数包括: a 弹性模量 单向拉伸或压缩时正应力与线应变之比,即

b 切变模量 切应力与相应的切应变之比,即

c 体积弹性模量 三向平均应力

与体积应变θ(=εx+εy+εz)之比,即

d 泊松比 单向正应力引起的横向线应变ε

1

的绝对值与轴向线应变ε的绝对值之比,即

此外还有拉梅常数λ。对于各向同性材料,这五个常数中只有两个是独立的。常用弹性常数之间的关系见表3-1 弹性常数间的关系。室温下弹性常数的典型值见表3-2 弹性常数的典型值。

2.广义虎克定律

线弹性材料在复杂应力状态下的应力应变关系称为广义虎克定律。它是由实验确定,通常称为物性方程,反映弹性体变形的物理本质。

A 各向同性材料的广义虎克定律表达式(见表3-3 广义胡克定律表达式) 对于圆柱坐标和球坐标,表中三向应力公式中的x 、y、z分别用r、θ、z和r、θ、θ代替。对于平面极坐标,表中平面应力和平面应变公式中的x、y、z用r、θ、z代替。

B 用偏量形式和体积弹性定律

初中数学公式定理总结

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

初中数学公式定理总结

1、 过两点有且只有一条直线 2、 两点之间线段最短 3、 同角或等角的补角相等 4、 同角或等角的余角相等

5、 过一点有且只有一条直线和已知直线垂直

6、 直线外一点与直线上各点连接的所有线段中,垂线段最短 7、 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8、 如果两条直线都和第三条直线平行,这两条直线也互相平行 9、 同位角相等,两直线平行 10、 11、 12、 13、 14、 15、 16、 17、 18、 19、 20、 21、

内错角相等,两直线平行 同旁内角互补,两直线平行 两直线平行,同位角相等 两直线平行,内错角相等 两直线平行,同旁内角互补 定理 三角形两边的和大于第三边 推论 三角形两边的差小于第三边

三角形内角和定理 三角形三个内角的和等于180° 推论1 直角三角形的两个锐角互余

推论2 三角形的一个外角等于和它不相邻的两个内角的和 推论3 三角形的一个外角大于任何一个和它不相邻的内角 全等三角形的对应边、对应角相等

22、 23、 24、 25、 26、

边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 角边角公理( ASA) 有两角和它们的夹边对应相等的两个