同济第五版高数答案

“同济第五版高数答案”相关的资料有哪些?“同济第五版高数答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“同济第五版高数答案”相关范文大全或资料大全,欢迎大家分享。

同济第五版高数习题答案 - 图文

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

习题9?1

1. 设有一平面薄板(不计其厚度), 占有xOy面上的闭区域D, 薄板上分布有密度为μ =μ(x, y)的电荷, 且μ(x, y)在D上连续, 试用二重积分表达该板上全部电荷Q.

解 板上的全部电荷应等于电荷的面密度μ(x, y)在该板所占闭区域D上的二重积分 . 2. 设, 其中D 又, 其中D

1

2

={(x, y)|?1≤x≤1, ?2≤y≤2};

1

2

={(x, y)|0≤x≤1, 0≤y≤2}.

2

试利用二重积分的几何意义说明I与I的关系.

1

解 I表示由曲面z=(x+y)与平面x=±1, y=±2以及z=0围成的立体V的体积. I表示由曲面z=(x+y)与平面x=0, x=1, y=0, y=2以及z=0围成的立体V的体积.

2

1

23

223

显然立体V关于yOz面、xOz面对称, 因此V是V位于第一卦限中的部分, 故

1

V=4V, 即I=4I.

1

1

2

3. 利用二重积分的定义证明: (1)∫∫ (其中σ为D的面积);

证明 由二重

高数同济第五版 第四章答案

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

1|34

习题4?1

1. 求下列不定积分:

1 (1)?2dx;

x111 解 ?2dx??x?2dx?x?2?1?C???C.

?2?1xx (2)?xxdx; 解 ?xxdx??1x3x2dx?12?12x?C?x2x?C. 35?123 (3)? 解

dx;

?1xdx??x?12dx???11x2?C?2x?C. 1??121 (4)?x23xdx; 解 ?x23xdx??1x27x3dx?17?137?13x?C?333xx?C. 10 (5)? 解

xdx;

?x21xdx??x?52dx???1131x2?C????C. 52xx??125 (6)?mxndx; 解

?mxdx??nnxmdx??11mxm?C?xnn?m?1mnm?nm?C.

(7)?5x3dx;

5 解 ?5x3dx?5?x3dx?x4?C.

4 (8)?(x2?3x?2)dx;

13 解 ?(x2?3x?2)dx??x2dx?3?xdx?2?dx?x3?x2?2x?C.

322|34

(9)?dh2gh(g是常

高数同济五版(47)

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

习题6?3

1? 由实验知道? 弹簧在拉伸过程中? 需要的力F(单位? N)与伸长量s(单位? cm)成正比? 即F?ks (k为比例常数)? 如果把弹簧由原长拉伸6cm? 计算所作的功?

解 将弹簧一端固定于A? 另一端在自由长度时的点O为坐标原点? 建立坐标系? 功元素为dW?ksds? 所求功为

126 W??ksds?ks?18k(牛?厘米)?

0206 2? 直径为20cm、高80cm的圆柱体内充满压强为10N/cm2的蒸汽? 设温度保持不变? 要

使蒸汽体积缩小一半? 问需要作多少功? 解 由玻?马定律知?

PV?k?10?(?102?80)?80000??

P(x)?[(?102)(80?x)]?80000?? P(x)?80080?? 设蒸气在圆柱体内变化时底面积不变? 高度减小x厘米时压强 为P(x)牛/厘米2? 则

?

功元素为dW?(??102)P(x)dx? 所求功为 W??400408001dx?800?ln2(J)?

(??10)?dx?80000??080??80??2 3? (1)证明? 把质量为m

高数同济五版(7)

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

习题12?4

1? 求下列微分方程的通解? (1)

dy?y?e?x? dx?dxdx 解 y?e?(e?x?e?dx?C)?e?x(e?x?exdx?C)?e?x(x?C)?

?? (2)xy??y?x2?3x?2?

解 原方程变为y??1y?x?3?2xx?

1 y?e??1xdx[?(x?3?2?xdxx)?edx?C] ?1x[?(x?3?21x)xdx?C]?x[?(x2?3x?2)dx?C] ?11332x(3x?2x?2x?C)?13x2?3C2x?2?x? (3)y??ycos x?e?sin x?

解 y?e??cosdx(?e?sinx?e?cosxdxdx?C)

?e?sixn(?e?sixn?esinxdx?C)?e?sixn(x?C)?

(4)y??ytan x?sin 2x?

解 y?e??tanxdx(?sin2x?e?tanxdxdx?C)

?elncosx(?sin2x?e?lncoxsdx?C)

?cosx(?2sinxc

高数同济五版(7)

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

习题12?4

1? 求下列微分方程的通解? (1)

dy?y?e?x? dx?dxdx 解 y?e?(e?x?e?dx?C)?e?x(e?x?exdx?C)?e?x(x?C)?

?? (2)xy??y?x2?3x?2?

解 原方程变为y??1y?x?3?2xx?

1 y?e??1xdx[?(x?3?2?xdxx)?edx?C] ?1x[?(x?3?21x)xdx?C]?x[?(x2?3x?2)dx?C] ?11332x(3x?2x?2x?C)?13x2?3C2x?2?x? (3)y??ycos x?e?sin x?

解 y?e??cosdx(?e?sinx?e?cosxdxdx?C)

?e?sixn(?e?sixn?esinxdx?C)?e?sixn(x?C)?

(4)y??ytan x?sin 2x?

解 y?e??tanxdx(?sin2x?e?tanxdxdx?C)

?elncosx(?sin2x?e?lncoxsdx?C)

?cosx(?2sinxc

工程数学线性代数课后答案__同济第五版

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

高等数学同济第五版第9章答案

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

习题9?1

1? 设有一平面薄板(不计其厚度)? 占有xOy面上的闭区域D? 薄板上分布有密度为? ??(x, y)的电荷? 且?(x, y)在D上连续? 试用二重积分表达该板上全部电荷Q?

解 板上的全部电荷应等于电荷的面密度?(x, y)在该板所占闭区域D上的二重积分?

Q????(x,y)d??

D 2? 设I1???(x2?y2)3d?? 其中D1?{(x? y)|???x?1? ?2?y?2??

D1 又I2???(x2?y2)3d?? 其中D2?{(x? y)|0?x?1? 0?y?2}?

D2试利用二重积分的几何意义说明I1与I2的关系?

解 I1表示由曲面z?(x2?y2)3与平面x??1? y??2以及z?0围成的立体V的体积? I2表示由曲面z?(x2?y2)3与平面x?0? x?1? y?0? y?2以及z?0围成的立体V1的体积?

显然立体V关于yOz面、xOz面对称? 因此V 1是V位于第一卦限中的部分? 故 V?4V1? 即I1?4I2? 3? 利用二重积分的定义证明?

高等数学同济第五版第6章答案

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

习题6?2?

1? 求图6?21 中各画斜线部分的面积? (1)

解 画斜线部分在x轴上的投影区间为[0? 1]? 所求的面积为

311. A??(x?x)dx?[2x2?1x2]1?00326 (2)

解法一 画斜线部分在x轴上的投影区间为[0? 1]? 所求的面积为 A??0(e?ex)dx?(ex?ex)|10?1?

解法二 画斜线部分在y轴上的投影区间为[1? e]? 所求的面积为

e?dy?e?(e?1)?1? A??1lnydy?ylny|1?1ee1 (3)

解 画斜线部分在x轴上的投影区间为[?3? 1]? 所求的面积为 A??[(3?x2)?2x]dx?32?

?331 (4)

解 画斜线部分在x轴上的投影区间为[?1? 3]? 所求的面积为

32? A??(2x?3?x2)dx?(x2?3x?1x3)|3??1?1333 2. 求由下列各曲线所围成的图形的面积? (1) y?1x2与x2?y2?8(两部分都要计算)?

2 解?

22

高等数学同济第五版第6章答案

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

习题6?2?

1? 求图6?21 中各画斜线部分的面积? (1)

解 画斜线部分在x轴上的投影区间为[0? 1]? 所求的面积为

311. A??(x?x)dx?[2x2?1x2]1?00326 (2)

解法一 画斜线部分在x轴上的投影区间为[0? 1]? 所求的面积为 A??0(e?ex)dx?(ex?ex)|10?1?

解法二 画斜线部分在y轴上的投影区间为[1? e]? 所求的面积为

e?dy?e?(e?1)?1? A??1lnydy?ylny|1?1ee1 (3)

解 画斜线部分在x轴上的投影区间为[?3? 1]? 所求的面积为 A??[(3?x2)?2x]dx?32?

?331 (4)

解 画斜线部分在x轴上的投影区间为[?1? 3]? 所求的面积为

32? A??(2x?3?x2)dx?(x2?3x?1x3)|3??1?1333 2. 求由下列各曲线所围成的图形的面积? (1) y?1x2与x2?y2?8(两部分都要计算)?

2 解?

22

快捷英语第五版答案

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

快捷英语第五版答案

【篇一:acfun题库310道题】

lass=txt>a、意见反馈需要登录才能反馈 b.用户可以直接咨询客服 c.存在反馈快捷通道d.意见反馈和举报效果一样

2、一下四个著名的动画业界人士,没有在动画业界童话《白箱》里出现过的是a. 富野由悠季 b.庵野秀明 c.南雅彦d.石川光久

3、《南方公园》中拥有无限复活能力的角色是?d a.斯坦 b.凯尔 c.卡特曼d.肯尼

4、游戏《无主之地》系列中,帅哥杰克的面具下隐藏着?b a.外星人脸 b.秘藏标识

c.一模一样的脸d.魔女的标识 5、评论才是?c a.下体 b.三体 c.本体 d.扁桃体

6、韩国男子组合bigbang的mv‘love song’,采用了一连贯的长镜头组成,但有一个破绽可以看出是mv后期合成的,这个破绽是?c

a.崔胜贤的项链b.姜大成的西装 c.权志龙的手表d.东永斐的皮鞋

7、北斗之萨样指的是哪位日本声优?a a后藤邑子 b.后藤纱里绪 c.佐藤利奈 d.新井里美

8.一下哪位男性没有喜欢过吉安娜?普罗德摩尔?b a.阿尔萨斯 b.伊利丹 c.凯尔萨斯 d.萨尔

9、“葛炮”的原型人物,曾为哪部动画配