包含与排除奥数问题
“包含与排除奥数问题”相关的资料有哪些?“包含与排除奥数问题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“包含与排除奥数问题”相关范文大全或资料大全,欢迎大家分享。
五年级高斯奥数之包含与排除含答案
第4讲 包含与排除
内容概述
有重叠部分酌若干对象的计数问题.能利用文氏图进行辅助分析,弄清文氏图中每部分的含义;结合文氏图理解两个对象和三个对象酌容斥原理;灵活处理具有一些不确定性酌计数问题,以及其他形式的重复计数问题.
典型问题
兴趣篇
1.暑假里,小悦和冬冬一起讨论“金陵十八景”.他们发现十八景中的每一处都有人去过,而且有五处是两人都去过的.如果小悦去过其中的卜二景,那么冬冬去过其中的几景?
2.在一群小朋友中,有12人看过动画片《黑猫警长》,有21人看过动画片《大闹天宫》,并且有8人两部动画片都看过.请问:至少看过其中一部的小朋友有多少人?
3.五年级一班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文均得满分的有3人,这两科都没有得满分的有29人.请问:语文成绩得满分的有多少人?
4.某餐馆有27道招牌菜.小悦吃过其中的13道,冬冬吃过其中的7道,而且有2道菜是两人都吃过的.请问:有多少道招牌菜是两人都没有吃过的?
5.如图4-I,已知甲、乙、丙三个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6、8、5,同时被这三个圆覆盖的部分的面积为2.请问: (1)只被甲或乙
包含与排除 - 图文
学而思奥数网,助你考入优秀的重点中学! www.aoshu.cn www.zhongkao.cn 联系电话:62164116
涉及互相重复的两类或三类对象的计数问题.解题可利用计算所有对象总个数的容斥原理,以及图示包含与排除关系.
1.某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加.那么有多少人两个小组都不参加?
【分析与解】 至少参加一个小组的同学有15+18-10=23人,所以有40-23=17人两个小组都不参加.
2.某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文均得满分的有3人,这两科都没有得满分的有29人.那么语文成绩得满分的有多少人?
【分析与解】 数学、语文至少有一门得满分的学生有45-29=16人.所以语文成绩得满分的有16-10+3=9人.
3.50名同学面向老师站成一行.老师先让大家从左至右按1,2,3,?,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转.问:现在面向老师的同学还有多少名?
【分析与解】在转过两次后,面向老师的同学分成两类:
第一类是标号既不
奥数 植树问题
电话:66009388 ( )年级( )数学( ) 李老师 经典专题精讲 第 讲 DSE 金牌数学专题系列 ---植树问题
学生姓名:
一?导入?
?
?
二?知识回顾?
?
绿化工程是造福子孙后代的大事。确定在一定条件下栽树、种花的棵数是最简单、最基本的“植树问题”。还有许多应用题可以化为“植树问题”来解,或借助解“植树问题”的思考方法来解。
先介绍四类最简单、最基本的植树问题。
为使其更直观,我们用图示法来说明。树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
显然,只有下面四种情形:
(1)非封闭线的两端都没有“点”时, “点数”=“段数”- 1。
(2)非封闭线只有一端有“点”时, “点数”=“段数”。
拥有梦想只是一种智力,实现梦想才是一种能力。
奥数 盈亏问题
盈亏问题
知识点:单位量=总量的盈亏差距÷单位分得的量的差 “分东西”总量和单位量一般是不变的
1.老师给同学们分卡片,如果每人5张,还剩18张,如果每人7张,就缺2张,请问:有多少个同学?一共有多少张卡片?
2.老猴子给小猴子分桃,每只小猴分10个桃,就多出9 个桃,每只小猴分11个桃,则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?
3.学校新近一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?
4.某小学少先队的同学到会议室开会,若每条长椅上坐3人则多出7人,若每条长椅上多坐4人则多出3条长椅,问:到会议室开会的少先队员有多少人?
5.军队分配宿舍,如果每间住3人,则多出20人,如果每间住6人,余下2人可以每人各住一个房间,现在每间住10人,可以空出多少个房间?
6.A、B 两人买了相同张数的信纸,A 在每个信封里装1 张信纸,最后用完所有的信封还剩40 张信纸,B 在每个信封里装3 张信纸,最后用完所有的信纸还剩40 个信封,他们都买了多少张信纸?
7.一个班的学生去划船,如果增加一条船,正好每
小升初奥数行程问题
16 行程问题
1
基本公式
1.1 路程(和、差) = 速度(和、差)×时间 火车过桥(隧道)是长度和
1.2 时间 = 路程(和、差)÷速度(和、差) 速度(和、差)= 路程(和、差)÷时间 1.3 速度差 = 快速 – 慢速
速度和 = 慢速 + 快速
快速 = (速度和 + 速度差) ÷2
1.4 慢速 = (速度和 –速度差)÷ 2 2
三类基本行程问题:相遇、追及、环形跑道。
2.1 相遇的含义:如果出发时间相同,则所走的时间相同;相遇时,两方都处于同一个位置。在超过2人的行
程问题中,相遇就是时间和距离的等量代换点;如果一方先出发或者有一方中间停止,则这一方还要算上先出发的时间或去掉停止的时间。
2.2 相遇:速度和,对应路程和,相遇时,有公式:
路程和 = 速度和×时间 时间 = 路程和÷速度和 速度和 = 路程和÷时间。
2.3 追及:速度差,对应路程差,相遇时,有公式:
路程差 = 速度差×时间 时间=路程差÷速度差 速度差 = 路程差÷时间。
2.4 环形跑道的同向追及,速度差,每相遇一次,路程差1圈。
距离差= 圈数×跑道长=速度差×时间 时间 =(圈数×跑道长)÷
奥数-时钟快慢问题
时钟快慢问题
时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别
是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。对于正常的时钟, 具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。 分针速度:每分钟走1小格,每分钟走6度 时针速度:每分钟走
1小格,每分钟走0.5度 12注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为65
【例 1】小明上午 8点要到学校上课,可是家里的闹钟早晨 6点10分就停
奥数-火车过桥问题
火车过桥
例1:一列火车经过南京长江大桥,大桥长6700米,这列火车长140
米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?
分析:火车过桥是指“全车通过”,即从车头上桥直到车尾离桥才算“过桥”.如下图:
一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?
例题2:从北京开往广州的列车长350米,每秒走22米。从广州开
往北京的列车长280米,每秒走20米。两车在中途相遇,问两车从车头相遇到车尾离开,一共要多少时间? 分析:这是火车与火车之间的相遇问题.具体过程如下图:
已知快车长200米,每秒行30米,慢车长1000米,每秒行10米.两车相向而行,问两车从车头相遇到车尾离开一共用了多少时间?
例3:某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过
的时间是15秒钟,客车长105米,速度为8米每秒.求步行人每小时行多少千米?
方方以每分钟60米的速度沿铁路边步行,一列长252米的货车从对面而来,从他身边通过用了12秒钟,求列车的速度。
例4:301次列车通过450米长的铁桥用了23秒,经过一位站在铁路边的扳道工人用了8秒。列车的速度和长度各是多少?
一列火车
小学奥数周期问题
周期问题
典型例解
[例1]把围棋里的黑白棋子按一定的规律排列着,其中第90颗是什么棋?第101颗是什么棋?
●●○●●○●●○?
【分析】仔细观察图中棋的排列,不难发现棋的排列规律是:2颗黑棋,1颗白棋,2颗黑棋,1颗白棋,也就是按“两颗黑棋,一颗白棋”的次序循环出现,因此,这道题的周期为3。 再看看90,101里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个。 解答 90÷3=30,正好有30个周期。
101÷3=33??2,有33个周期还多2个。 所以,第90颗棋是白棋,第101颗棋是黑棋。 答:第90颗是白棋,第101颗是黑棋
[举一反三1]
①有一列数:5、6、2、4、5、6、2、4?第129个数是多少?
②有同样大小的黑、白、红珠子共180个,按5个红珠,4个白珠,3个黑珠排列,第158个珠子是什么颜色?这158个珠子中有多少个黑珠? ③△△○△△○△△○?其中第99个是什么图形? [例2] 7??7???7??7?????7积的个位数字是几? ???202?7[分析]要求202个7连乘的积的个位数字,因此,我们只需要考虑积的个位数字的排列规律。
奥数 火车过桥问题
【火车过桥】
火车在行驶中,经常发生过桥与通过隧道,两车对开错车与快车超越慢车等情况,在分析题目的时候一定得结合着图来进行
【经典例题】
例题1:一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火
车每分钟行400米,这列火车通过长江大桥需要多少分钟?
分析:火车过桥是指“全车通过”,即从车头上桥直到车尾离桥才算“过桥”.如下图:
习题1:一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,
山洞长多少米?
例题2:从北京开往广州的列车长350米,每秒走22米。从广州开往北京的列
车长280米,每秒走20米。两车在中途相遇,问两车从车头相遇到车尾离开,一共要多少时间?
分析:这是火车与火车之间的相遇问题.具体过程如下图:
习题2:已知快车长200米,每秒行30米,慢车长1000米,每秒行10米.两车相向而行,问两车从车头相遇到车尾离开一共用了多少时间?
例题3:某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是
15秒钟,客车长105米,速度为8米每秒.求步行人每小时行多少千米?
习题3:方方以每分钟60米的速度沿铁路边步行,一列长252米的货车从对面而来,从他身
小学奥数周期问题
周期问题
典型例解
[例1]把围棋里的黑白棋子按一定的规律排列着,其中第90颗是什么棋?第101颗是什么棋?
●●○●●○●●○?
【分析】仔细观察图中棋的排列,不难发现棋的排列规律是:2颗黑棋,1颗白棋,2颗黑棋,1颗白棋,也就是按“两颗黑棋,一颗白棋”的次序循环出现,因此,这道题的周期为3。 再看看90,101里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个。 解答 90÷3=30,正好有30个周期。
101÷3=33??2,有33个周期还多2个。 所以,第90颗棋是白棋,第101颗棋是黑棋。 答:第90颗是白棋,第101颗是黑棋
[举一反三1]
①有一列数:5、6、2、4、5、6、2、4?第129个数是多少?
②有同样大小的黑、白、红珠子共180个,按5个红珠,4个白珠,3个黑珠排列,第158个珠子是什么颜色?这158个珠子中有多少个黑珠? ③△△○△△○△△○?其中第99个是什么图形? [例2] 7??7???7??7?????7积的个位数字是几? ???202?7[分析]要求202个7连乘的积的个位数字,因此,我们只需要考虑积的个位数字的排列规律。