一维离散型随机变量的分布律
“一维离散型随机变量的分布律”相关的资料有哪些?“一维离散型随机变量的分布律”相关的范文有哪些?怎么写?下面是小编为您精心整理的“一维离散型随机变量的分布律”相关范文大全或资料大全,欢迎大家分享。
离散型随机变量
教 案
课程名称 概率统计 授课教师 职 称 系(部)
教 研 室
2013 —2014 学年 第 二 学期
授课对象: 本、专科 2012 (年)级 专业 1 班
本、专科 (年) 级 专业 班 本、专科 (年) 级 专业 班
教案书写与使用要求
1、教师在授课前两周完成教案书写,并由教研室主任亲自审批(教研室主任的教案由系部教学主任代签),教师必须携带教案上课。每次教案只可使用一轮课;在授课对象的专业、层次相同,使用同版次教材且授课内容及学时数完全一致的情况下,可使用同一本教案,否则不允许通用。
2、封面填写:不能空项,各项要写全称;授课对象:选择本科或专科
§2.1 离散型随机变量
第二章随机变量及其分布
在随机试验中,人们除对某些特定事件发生的概率感兴趣外,往往还关心某个与随机试验的结果相联系的变量.由于这一变量的取值依赖于随机试验结果,因而被称为随机变量.与普通的变量不同,对于随机变量,人们无法事先预知其确切取值,但可以研究其取值的统计规律性.本章将介绍两类随机变量及描述随机变量统计规律性的分布.
§2.1随机变量
一、随机变量概念的引入
为全面研究随机试验的结果,揭示随机现象的统计规律性,需将随机试验的结果数量化,即把随机试验的结果与实数对应起来.
1.在有些随机试验中,试验的结果本身就由数量来表示. 例如:在掷骰子试验中,结果可用1,2,3,4,5,6来表示
2.在另一些随机试验中,试验结果看起来与数量无关,但可以指定一个数量来表示.
例如:掷硬币试验,其结果是用汉字“正面”和“反面”来表示的,可规定:用1表示“正面朝上”用0表示“反面朝上”
二、随机变量的定义
1定义设随机试验的样本空间为?,对每个???,都有一个实数X(?)与之对应,则称X(?)为随机变量.简记为X.
随机变量通常用英文大写字母X,Y,Z或希腊字母?,?等表示。 随机变量的取值一般用小写字母x,y,z等表示。 2随机变量的特征 1)它是一个变
3.2 二维离散型随机变量
微积分 线性代数
微积分 线性代数
一、联合分布列设二维离散型随机变量 ( X , Y ) 的所有可能取值为 ( xi , y j ) , 二维离散型随机变量 离散型
称
P{ X = xi , Y = yj } = pi j , X Yi , j = 1,2, L
y1
y2 L y j L
为(X,Y)的联合分布列. , ) 联合分布列. 简称分布列 简称分布列. 分布 用三维表表示: 用三维表表示: 表示
x1 x2
p11 p12 L p1 j L p21 p22 L p2 j L
Mxi
M M M M
M M
pi 1 pi 2 L pi j L
M
微积分 线性代数
Y X
y1
y2 L y j L
x1 x2
p11 p12 L p1 j L p21 p22 L p2 j L
Mxi
M M M M
M M
pi 1 pi 2 L pi j L
M
定 理 3.3 联 合 分 布 列 具 有 以 下 性 质 :(1) 非负性(2) 正 则 性
pi j ≥ 0 , i, j = 1,2,L
∑∑ pi j
ij
= 1.
微积分 线性代数
例3.3 设随机变量 X 在 1,2,3,4 四个整数中等可能 地取一个值, 另一个随机变量Y 在 1 ~ X中等可能 地取一个值 地取一整数值. 地
2、1离散型随机变量及其分布列
莱阳市第九中学 数学组
学习目标:1. 理解离散型随机变量及其分布列的概念与性 质 2. 会求出某些简单的离散型随机的分布列
3、理解两点分布何超几何分布及其推导过程, 并能简单的应用
一、讨论及要求(约10分钟) (一)重点讨论的问题:1、任何随机试验的所有结果都可以用数字表示吗?随机 变量的定义? 2、随机变量与函数有何区别与联系? 3、什么是离散型随机变量? 4、什么是离散型随机变量的分布列? 求分布列的步骤? 3、两种特殊的分布?
(二)讨论要求: (1)小组内先集中讨论,再组内一对一讨论,小 组长注意控制讨论节奏,及时安排展示与点评。 (2)力争全部达成目标,且多拓展,注重方法总结, 力争全部掌握.
引例:(1)抛掷一枚骰子,可能出现的点数有几种情况? 探究一:能否把 (2)姚明罚球 2次有可能得到的分数有几种情况? 掷硬币的结果也 正面向上, X =1,表 0 分 , 1 分 , 2 分 用数字来表示呢? 示反面向上”可以,用“X=0,表示
1,2,3,4,5,6
(3)抛掷一枚硬币,可能出现的结果有几种情况?
正面向上,反面向上思考:在上述试验开始之前,你能确定结果是哪一 种情况吗? 分析:不行,虽然我们能够事先知道随机试验可能出现 的所有结果
离散型随机变量的均值
2.3.1 离散型随机变量的均值
自 主 学 习
课 标 导 学
通过实例,理解离散型随机变量的均值、方差的概念, 能计算简单离散型随机变量的均值、方差,并能解决一些实 际问题.
教 材 导 读1.一般地,若离散型随机变量 X 的分布列是
X x1 x2 xi xn P p1 p2 pi pn
EX=x1p1+x2p2+ +xipi+ +xnpn 则称①________________________________为随机变量 X 的均值或数学期望.
2.离散型随机变量的均值反映了 随机变量取值的平均水平 ②______________________________. 3 若 X、Y 是离散型随机变量,且 Y=aX+b,则有 EY= aEX+b ③________________.EX=p 4.若随机变量 X 服从两点分布,则④__________.
思考探究 1 若 c 为常数,则 E(c)为何值? 提示:E(c)=c 思考探究 2 若 X、Y 均为离散型随机变量,则 E(X+Y)与 EX 和 EY 间有什么关系? 提示:E(X+Y)=EX+EY.
基 础 自 测1.随机变量 X 的分布列为
X 0 2 4 P 0.4 0.3 0.3则 E(
一维随机变量及其分布题目
一、单项选择题
1 设离散型随机变量X的概率分布为 X 0 P 0.25 则c?( ). A.
1 0.5 2 c 1111 B. C. D. 84322.某学习小组有4名男生2名女生共6个同学,从中任选2人作为学习小组长,设随机变
量X为2人中的女生数,则X的分布列为 ( ) A. X 1 2 B. X 0 1 C. X 0 1 2 D. X 0 1 2 81 28 281 111 P P P P 151551551515333
3.下列各函数可作为随机变量分布函数的是 ( )
?0x?0??1x??1?0x?0?2x0?x?1??? A.F1(x)?? B.F2(x)??x0?x?1 C.F3(x)??x?1?x?1 D.F4(x)??2x0?x?1
?0其他?1x?1?1?2x?1x?1???4.设F1(x)与F2(x)分别为随机变量X1与X2的分布函数,为使F(x)?aF1(x)?b
2.1离散型随机变量及其分布列(2)
2.离1散型随机量变 其分及布列()2
对于
一随机试验个,仅知道试验仅的可结能果是 够不,的要能还把每一个握果结发的生概.率引例抛 掷一骰子,枚得所点数的有X哪值?些每个取值概的率是少多 ? :X解取的有值、21、3、4、、6151 件 事X= 的概率i为( =1, 2,i , 6 )记作P : =Xi 66 i=(, 21 ,,6
列)表成Xi=
11 6
216 3
16 416
51
66 6
的1式形P X=i 该表仅不列了随机出变量的所有X值取.而 且出了列的每X个一取的概值率
.分列布
离型散机变量的随布列分:般地一,离散型若随机量X变 能取的不同可值:为x1 x,,…2x,i…,,xnX取每 一x个 i(=1i2,,…,)n概率P的(Xx=)i=pi则,称表: X P1 p1 x2xp 2… …ix ip …… 为散离型随机变量的X率概分布列,简称为的分X布. 有时列为了达表单简也,用式等 P(X=xi)p=ii 1=,2…,, n来示表X的分列布
离散型随机变量分布列的应意注问题:X
P
1Px12xP
2…
x…Pii
…
…1、分布列构成的 :()列出了离散1型机随变量X的有所取值 (;2求出)了的每X个取一的概率值;
离散型随机变量的均值与方差、正态分布
2012届安吉高级中学高三数学(理)计数原理与概率统计复习导学案(主备人:鲍利人 )
10.8 离散型随机变量的均值与方差、正态分布
班级 姓名
一、学习目标:
1.理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.
2.利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义. 二、学习建议:
1.把握基本题型; 2.强化方法选择.
三、自主预习:(请用7分钟左右的时间完成,如若困难可先解决知识链接再解题) 1.某学习小组的一次数学考试成绩为: 分 数 频 数 频 率 分数×频率 95 2 96 4 97 3 98 1 填写表格的三、四两行,并求出①该学习小组这次考试的平均分;②表格的第四行的4个数据之和。 根据你的结果,解析你的发现。
知识链接1.
1.离散型随机变量的均值与方差的概念
若离散型随机变量X的分布列为 X P x1 p1 x2 p2 … … xi pi … … xn pn (1)期望:称E(X)=_____________________为随机变量X的均值或数学期望,它反映了离
离散型随机变量及其分布列测试题
离散型随机变量及其分布列测试题
一、选择题:
1、如果X是一个离散型随机变量,则假命题是( )
A. X取每一个可能值的概率都是非负数;B. X取所有可能值的概率之和为1; C. X取某几个值的概率等于分别取其中每个值的概率之和;
D. X在某一范围内取值的概率大于它取这个范围内各个值的概率之和 2、甲乙两名篮球运动员轮流投篮直至某人投中为止,设每次投篮甲投中的概率为0.4,乙投中的概率为0.6,而且不受其他投篮结果的影响.设甲投篮的次数为?,若甲先投,则P(??k)?
A.0.6?0.4 B.0.24?0.76 C.0.4?0.6 D.0.76?0.24
3、设随机变量X等可能取1、2、3...n值,如果p(X?4)?0.4,则n值为( )
A. 4 B. 6 C. 10 D. 无法确定
4、投掷两枚骰子,所得点数之和记为X,那么X?4表示的随机实验结果是( )
A. 一枚是3点,一枚是1点 B. 两枚都是2点
C. 两枚都是4点 D. 一枚是3点,一枚是1
离散型随机变量的期望与方差
共21页
11.2 离散型随机变量的期望与方差
高考试题
1.(2005年江苏)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,
9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(D)
A.9.4,0.484 B.9.4,0.016 C.9.5,0.04 D.9.5,0.016 提示:本题考查了统计数据中平均数、方差有关概念、公式及有关计算等:
7个数据中去掉一个最高分和一个最低分后,余下的5个数为:9.4,9.4,9.6,9.4, 9.5,则平均数为:x?s29.4?9.4?9.6?9.4?9.5522?9.46?9.5,即x?9.5,方差为:
2?15[(9.4?9.5)?(9.4?9.5)?????(9.5?9.5)]?0.016,即 s2?0.016,故
选D.
2.(2005年全国卷三)设l为平面上过点(0,1)的直线,l的斜率等可能地取?22,?3,
5252?,0,,3,22,用ξ表示坐标原点到l的距离,则随机变量ξ的数学期望
Eξ= .
[答案]
47
13提示:原点到过点(0,1)且斜率为?22、2