回归分析课程设计spss
“回归分析课程设计spss”相关的资料有哪些?“回归分析课程设计spss”相关的范文有哪些?怎么写?下面是小编为您精心整理的“回归分析课程设计spss”相关范文大全或资料大全,欢迎大家分享。
回归分析课程设计
应用回归分析
课程设计指导书
一、 课程设计的目的
(1)巩固应用回归分析的理论知识,掌握其思想精髓;
(2)运用回归分析研究方法,加强解决实际问题的能力; (3)熟练使用spss软件对数据进行回归分析。
二、
设计名称:研究货运总量y(万吨)与工业总产值x1(亿元)、农业总
产值x2(亿元)、居民非商品支出x3(亿元)的关系
三、 设计要求
(1)正确运用spss软件对数据进行处理
(2)正确分析数据,尝试选择不同的模型拟合数据
(3)课程设计中,遇到问题要翻阅课本去努力解决问题 (4)要有耐心,对于模型的显著性和回归系数都要进行检验 (5)认真并独立完成
四、 设计过程
(1)思考课程设计的目的,寻找来源真实的数据 (2)上网搜集并整理数据资料 (3)根据数据确定研究对象
(4)应用统计软件来处理数据信息 (5)选择通过各种检验的线性模型
(6)写出相应的实验报告,并对结果进行分析
五、设计细则
(1)搜集数据阶段,数据不能过于繁杂,也不能太少;
(2)做课程设计前,认真看书和笔记,及平时的实验报告,掌握丰富的理论; (3)有耐心,不紧不慢;要细
应用回归分析课程设计(SAS)
关于居民家庭人均可支配收入与消费支出的一元回归分析
【摘要】实行改革开放的三十多年里,全国经济发展迅速,经济的发展也带动着人民生活的提高,居民家庭人均可支配收入逐年提高,人民生活环境不断优化。与此同时,人民生活水平的提高也反作用于经济的发展,人均可支配收入的增加也拉动国内的商品消费,促进经济的发展。为了进一步深入了解居民家庭人均可支配收入与消费支出的关系,本文选择通过一元回归分析的方法,在已有数据的基础上挖掘居民家庭人均可支配收入与消费支出的明确关系。
一、问题提出:
改革开放三十多年里,随着经济的发展,居民家庭人均可支配收入不断提高,而居民家庭人均可支配收入的提高又反作用于商品消费,不断促进着国内商品消费的发展,拉动国家经济的发展。由此可见在居民家庭人均可支配收入与消费支出之间必然存在着一定的联系,我们将尝试通过已有的数据,进行分析总结,挖掘出二者之间的数学关系。
二、数据分析:
数据样本与数据来源
全国各地区城市居民家庭人均可支配收入与消费支出,数据均选自“国家统计局网”中2000—2005年的统计数据(见表1)。
全国各地区居民家庭人均可支配收入与消费支出(2000-2005)
2005年人均收入人均消费2004年2003年人均收入
回归分析SPSS习题答案
回归分析习题
1通常用来评价商业中心经营好坏的一个综合指标是单位面积的营业额,它是单位时间内(通常为一年)的营业额与经营面积的比值。对单位面积营业额的影响因素的指标有单位小时车流量、日人流量、居民年平均消费额、消费者对商场的环境、设施及商品的丰富程度的满意度评分。这几个指标中车流量和人流量是通过同时对几个商业中心进行实地观测而得到的。而居民年平均消费额、消费者对商场的环境、设施及商品的丰富程度的满意度评分是通过随机采访顾客而得到的平均值数据。(数据集wyzl4_2中存放了从某市随机抽取的20个商业中心有关指标的数据,利用该数据完成下列工作 (1)研究变量间的相关程度。(其余6个变量与“单位面积年营业额”间的相关程度,其余6个变量之间的相关程度);
(2)由(1)的结论建立“单位面积年营业额”与和其线性相关程度最高的变量的一元线性回归方程;
(3)采用逐步回归方法建立“单位面积年营业额”的预测公式。
表 20个商业中心有关指标的数据
商业中单位面积年每小时机日人流居民年消对商场环对商场对商场商心编号 营业额(万动车流量量 (万费额(万境满意度设施满品丰富程x4 元/平方(万辆)x1 人)x2 元
回归分析SPSS习题答案
回归分析习题
1通常用来评价商业中心经营好坏的一个综合指标是单位面积的营业额,它是单位时间内(通常为一年)的营业额与经营面积的比值。对单位面积营业额的影响因素的指标有单位小时车流量、日人流量、居民年平均消费额、消费者对商场的环境、设施及商品的丰富程度的满意度评分。这几个指标中车流量和人流量是通过同时对几个商业中心进行实地观测而得到的。而居民年平均消费额、消费者对商场的环境、设施及商品的丰富程度的满意度评分是通过随机采访顾客而得到的平均值数据。(数据集wyzl4_2中存放了从某市随机抽取的20个商业中心有关指标的数据,利用该数据完成下列工作 (1)研究变量间的相关程度。(其余6个变量与“单位面积年营业额”间的相关程度,其余6个变量之间的相关程度);
(2)由(1)的结论建立“单位面积年营业额”与和其线性相关程度最高的变量的一元线性回归方程;
(3)采用逐步回归方法建立“单位面积年营业额”的预测公式。
表 20个商业中心有关指标的数据
商业中单位面积年每小时机日人流居民年消对商场环对商场对商场商心编号 营业额(万动车流量量 (万费额(万境满意度设施满品丰富程x4 元/平方(万辆)x1 人)x2 元
多元回归分析SPSS
多元线性回归分析预测法
多元线性回归分析预测法(Multi factor line regression method,多元线性回归分析法)
目录 [隐藏] ? ? ? ? o 1 多元线性回归分析预测法概述 2 多元线性回归的计算模型[1] 3 多元线性回归模型的检验[1] 4 多元线性回归分析预测法案例分析 4.1 案例一:公路客货运输量多元线性回归预测方法探讨[2] ? ? 5 相关条目 6 参考文献 [编辑]
多元线性回归分析预测法概述
在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。例如,某一商品的销售量既与人口的增长变化有关,也与商品价格变化有关。这时采用一元回归分析预测法进行预测是难以奏效的,需要采用多元回归分析预测法。
多元回归分析预测法,是指通过对两上或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析。 [编辑]
多元线性回归的计算模型[1]
一元线性回归是一个主要影响因素作为
spss理论06 回归分析
回归分析
第七章
回归分析
7.1 回归分析的概念 7.2 一元线性回归分析 7.3 多元线性回归分析 7.4 曲线估计 7.5 二项Logistic回归分析
回归分析
回归分析的概念
寻求有关联(相关)的变量之间的关系 主要内容:
从一组样本数据出发,确定这些变量间的定量关系 式 对这些关系式的可信度进行各种统计检验 从影响某一变量的诸多变量中,判断哪些变量的影 响显著,哪些不显著 利用求得的关系式进行预测和控制
回归分析
回归分析的模型
按是否线性分:线性回归模型和非线性回归模型 按自变量个数分:简单的一元回归,多元回归 基本的步骤:利用SPSS得到模型关系式,是否是我们所要的,要看回归方程的显著性检验(F检验)和回归系数 b的显著性检验(T检验),还要看拟合程度R2 (相关系数 的平方,一元回归用R Square,多元回归用Adjusted R Square)
回归分析
回归分析的过程
在回归过程中包括:
Liner:线性回归 Curve Estimation:曲线估计 Binary Logistic: 二分变量逻辑回归 Multinomial Logistic:多分变量逻辑回归
相关分析与回归分析SPSS实现
相关分析与回归分析
一、试验目标与要求
本试验项目的目的是学习并使用SPSS软件进行相关分析和回归分析,具体包括:
(1) 皮尔逊pearson简单相关系数的计算与分析
(2) 学会在SPSS上实现一元及多元回归模型的计算与检验。 (3) 学会回归模型的散点图与样本方程图形。 (4) 学会对所计算结果进行统计分析说明。 (5) 要求试验前,了解回归分析的如下内容。 ? 参数α、β的估计
? 回归模型的检验方法:回归系数β的显著性检验(t-检验);回归
方程显著性检验(F-检验)。
二、试验原理
1.相关分析的统计学原理
相关分析使用某个指标来表明现象之间相互依存关系的密切程度。用来测度简单线性相关关系的系数是Pearson简单相关系数。
2.回归分析的统计学原理
相关关系不等于因果关系,要明确因果关系必须借助于回归分析。回归分析是研究两个变量或多个变量之间因果关系的统计方法。其基本思想是,在相关分析的基础上,对具有相关关系的两个或多个变量之间数量变化的一般关系进行测定,确立一个合适的数据模型,以便从一个已知量推断另一个未知量。回归分析的主要任务就是根据样本数据估计参数,建立回归模型,对参数和模型进行检验和判断,并进行预测等。
线性回归数学模型
多选项分析及回归分析spss
、多选项分析
一)问卷中多选项问题的分析
多选项问题的分解通常有2中方法:1、多选项二分法(MultiPIe DiChOtOmieS MethOd );
2、多选项分类法( Multiple Category Method)。
1、多选项二分法( MultiPle DiChOtOmieS MethOd );
多选项二分法是将多选项问题中的每个答案设为一个SPSS变量,每个变量只有0或
1 两个取值,分别表示选择个该答案和不选择该答案。
按照多选项二分法可以将居民储蓄调查中村 (取)款目的这个多选项问题分解为十一个问题,并设置十一个SPSS变量。
2、多选项分类法( MultiPle CategOry MethOd )
多选项分类法中,首先应估计多选项问题最多可能出现的答案个数;然后,为每个答案设置一个SPSS变量,变量取值为多选项问题中的可选答案。
按照多选项分类法可将居民储蓄调查中存 (取)款目的这个多选项问题分解成三个问题(通常给出的答案数不会超过三个),并设置三个SPSS变量。
以上两种分解方法的选择考虑是否便于分析和是否丢失信息两个方面。多选项二分法分解问题存在较大的信息丢失,这种方式没有体现选项的顺序,如果问题存在顺序则适合采用分类法。
同时注意自己需要的
SPSS实验6-回归分析
SPSS作业6:回归分析
(一) 回归分析
多元线性回归模型的基本操作:
(1)选择菜单Analyze-Regression-Linear;
(2)选择被解释变量(能源消费标准煤总量)和解释变量(国内生产总值、工业增加值、建筑业增加值、交通运输邮电业增加值、人均电力消费、能源加工转换效率)到对应框中;
(3)在Method框中,选择Enter方法;
在Statistics框中,选择Estimates、Model fit、Covariancematrix、Collinearity diagnostics选项; 在Plots框中,选择ZRESED到Y框,ZPRED到X框,再选择Histogram和Normal plot; (4)选择菜单Analyze-Non Test-1-Sanple K-S; 选择菜单Analyze-Correlate-Brivariate; 结果如下:
Regression
能源消费需求的多元线性回归分析结果(强制进入策略) (一) Model Summary bModel 1 R .990 aR Square .980 Adjusted R Square .973 Std. Error of the Estimate
SPSS—回归—多元线性回归结果分析(二)
SPSS—回归—多元线性回归结果分析(二) 2011-10-27 14:44
,最近一直很忙,公司的潮起潮落,就好比人生的跌岩起伏,眼看着一步步走向衰弱,却无能为力,也许要学习“步步惊心”里面“四阿哥”的座右铭:“行到水穷处”,”坐看云起时“。
接着上一期的“多元线性回归解析”里面的内容,上一次,没有写结果分析,这次补上,结果分析如下所示: 结果分析1:
由于开始选择的是“逐步”法,逐步法是“向前”和“向后”的结合体,从结果可以看出,最先进入“线性回归模型”的是“price in thousands\ 建立了模型1,紧随其后的是“Wheelbase\ 建立了模型2,所以,模型中有此方法有个概率值,当小于等于0.05时,进入“线性回归模型”(最先进入模型的,相关性最强,关系最为密切)当大于等 0.1时,从“线性模型中”剔除
结果分析:
1:从“模型汇总”中可以看出,有两个模型,(模型1和模型2)从R2 拟合优度来看,模型2的拟合优度明显比模型1要好一些 (0.422>0.300)
2:从“Anova\可以看出“模型2”中的“回归平方和”为115.311,“残差平方和”为153.072,由于总平方和= 回归平方和+残差平方和,由于