蝴蝶定理公式小学奥数梯形
“蝴蝶定理公式小学奥数梯形”相关的资料有哪些?“蝴蝶定理公式小学奥数梯形”相关的范文有哪些?怎么写?下面是小编为您精心整理的“蝴蝶定理公式小学奥数梯形”相关范文大全或资料大全,欢迎大家分享。
小学奥数几何之蝴蝶定理
几何之蝴蝶定理
一、 基本知识点
定理1:同一三角形中,两个三角形的高相等,则面积之比 等于对应底边之比。
S1 : S2 = a : b
定理2:等分点结论( 鸟头定理)
如图,三角形△AED的面积占三角形△ABC的面积的
313?? 5420
定理3:任意四边形中的比例关系( 蝴蝶定理)
1) S1∶S2 =S4∶S3 或 S1×S3 = S2×S4
上、下部分的面积之积等于左、右部分的面积之积
2)AO∶OC = (S1+S2)∶(S4+S3)
梯形中的比例关系( 梯形蝴蝶定理)
1)S1∶S3 =a2∶b2
上、下部分的面积比等于上、下边的平方比
2)左、右部分的面积相等
3)S1∶S3∶S2∶S4 =a2∶b2 ∶ab∶ab
4)S的对应份数为(a+b)2
定理4:相似三
小学奥数公式
公式
1. 平方差公式 a2 - b2 = ( a + b )( a – b )
2. 和平方公式 ( a + b )2 = a2 + 2ab + b2 3. 差平方公式 ( a - b )2 = a2 - 2ab + b2 4. 等差数列公式 Sn =
n =
= a1 +
+ 1
5. 立方和公式: a3 + b3 = ( a + b )( a2 – ab + b2 ) 6. 立方差公式: a3 – b3 = ( a - b )( a2 + ab + b2 ) 7. 奇数和公式: 1 + 3 + 5 + …… + (2n-1) = n2
8. 偶数和公式: 2 + 4 + 6 + …… + 2n = n(n+1)
9. 多数平方和公式: 12 + 22 + 32 + …… + n2 =
10. 多数立方和公式: 13 + 23 + 33 + …… + n3 = (1 + 2 + …… + n)2
小学奥数公式大全
公式集锦
小学奥数公式大全
倍数
1 、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2 、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1 3 、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4 、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5 、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6 、加数+加数=和 和-一个加数=另一个加数
7 、被减数-减数=差 被减数-差=减数 差+减数=被减数
8 、因数×因数=积 积÷一个因数=另一个因数
9 、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
1 、正方形
C周长 S面积 a边长 周长=边长× 4 C=4a
面积=边长×边长 S=a×a
表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱
小学奥数公式集
奥数公式集
小学奥数全部公式
和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题的公式
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
差倍问题的公式
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
植树问题的公式
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
奥数公式集
盈亏问题的公式
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大
小学奥数经典专题点拨:速算公式
小学奥数经典专题例题讲解
速算公式
【首同末合十的两位数相乘公式】若两个两位数的十位数字都是a,个位上的数分别为b和c,且b+c=10,则这样的两个数便是“首同末合十”的两个两位数,它们的积为
(10a+b)(10a+c)=(10a)2+10ab+10ac+bc
=102a2+10a(b+c)+bc
=100a2+100a+bc
=a(a+1)×100+bc。
根据这一公式,两个“首同末合十”的两位数相乘,可以先把首位数乘以比它大1的数的积的100倍,然后在所得的结果后面,添上两个末位数的积。
例如,72×78=(7×8)×100+2×8
=5616
45×45=(4×5)×100+5×5
=2025
首同末合十的计算公式,也可以推广到两个三位数、两个四位数相乘的速算中去。例如
256×254
可取a=25,b=6,c=4,再运用公式计算,得
256×254=[25×(25+1)]×100+6×4
=[25×26]×100+24
=65024
又如,155×155=(15×16)×100+5
奥数专题-余数定理
练习二(余数定理)
A组
1、甲数除以11的余数为9,乙数除以11的余数为7,丙数除以11的余数为6,那么:
①(甲数+乙数+丙数)÷11的余数为 ; ②(甲数+乙数-丙数)÷11的余数为 ; ③(甲数×乙数×丙数)÷11的余数为 ; ④(甲数-乙数+丙数)÷11的余数为 。
2、17×354×409×672除以3所得的余数是 。
3、5678964×47165432的积除以7的余数是 。
4、19917被7除,余数是 。
5、(203×203×…×203-2003)除以29的余数是 。 2002个203
6、某个大于1的自然数分别除442、297、210得到相同的余数,则该自然数是 。
7、有一个(大于1)数,除300,262,205得到相同的余数,这个数 是 (第一届华杯赛题)
8、某个自然数分别除13511、13903、14589得到的余数相同,则该自然数最大是 。
9、有一个自然数,用它分别去除63、91、129得到三个余数的和是25,这个数是 。(1998年
小学奥数公式大全及专题训练试题
小学奥数公式大全及其运用
1 、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2 、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3 、速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4 、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5 、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6 、加数+加数=和 和-一个加数=另一个加数 7 、被减数-减数=差 被减数-差=减数 差+减数=被减数
8 、因数×因数=积 积÷一个因数=另一个因数 9 、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
1 、正方形
C周长 S面积 a边长 周长=边长× 4 C=4a
面积=边长×边长 S=a×a 2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a 3 、长方形
C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab 4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
蝴蝶定理和风筝定理
第三讲 蝴蝶定理和风筝定理
一、引入
1、蝴蝶定理
在梯形ABCD中,由对角线AC与BD分成的左右两个三角形(△ADO和△BCO)形状有点像一对蝴蝶翅膀,把这两个三角形称为蝴蝶三角形(如图),蝴蝶三角形的面积相等。
B A
O D 即S△ADO=S△BCO
C 2、风筝定理
在任意四边形ABCD中,对角线AC、BD分成了四个三角形(如图), A S1 这四个三角形的面积分别记为:S1 、S2 、S3 、S4。
则它们的关系是:
S3 O S1×S4 =S2×S3
S4
即相对的两个三角形的面积乘积是相等的。
D
B S2
C 二、新授课
【例1】如图,梯形的两条对角线分梯形为四个小三角形,已知△AOD的面积是3平方厘
米,△DOC的面积是9平方厘米,梯形ABCD的面积是多少平方厘米?
A O D C B
练习
1、如图,2BO=DO,且阴影部分的面积是4cm2,那么梯形ABCD的面积是多少平方厘米?
B A
O D 2
2、如图,阴影部分面积是4cm,OC=2AO,求梯形的面积。 B A O
C D 1 C
【例2】如图,BD,CF将长方形ABCD分成四块,红色三角形的面积是4平方厘米,黄
色三
蝴蝶定理与燕尾定理
燕尾定理
燕尾定理:
在三角形ABC中,AD,BE,CF相交于同一点O,那么S?ABO:S?ACO?BD:DC.
AEO
梯形中比例关系(“梯形蝴蝶定理”):
FBDCAS2aS1OS3S4DBbC
①S1:S3?a2:b2
②S1:S3:S2:S4?a2:b2:ab:ab; ③S的对应份数为?a?b?. 等积变形
①等底等高的两个三角形面积相等;
②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图S1:S2?a:b
2ABS1aS2bCD
③夹在一组平行线之间的等积变形,如右上图S△ACD?S△BCD;
反之,如果S△ACD?S△BCD,则可知直线AB平行于CD.
④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;
⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.
二、鸟头定理
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.
如图在△ABC中,D,E分别是AB,AC上的点如图 ⑴(或
蝴蝶定理与燕尾定理
燕尾定理
燕尾定理:
在三角形ABC中,AD,BE,CF相交于同一点O,那么S?ABO:S?ACO?BD:DC.
AEO
梯形中比例关系(“梯形蝴蝶定理”):
FBDCAS2aS1OS3S4DBbC
①S1:S3?a2:b2
②S1:S3:S2:S4?a2:b2:ab:ab; ③S的对应份数为?a?b?. 等积变形
①等底等高的两个三角形面积相等;
②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图S1:S2?a:b
2ABS1aS2bCD
③夹在一组平行线之间的等积变形,如右上图S△ACD?S△BCD;
反之,如果S△ACD?S△BCD,则可知直线AB平行于CD.
④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;
⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.
二、鸟头定理
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.
如图在△ABC中,D,E分别是AB,AC上的点如图 ⑴(或