电磁感应选择题及答案解析
“电磁感应选择题及答案解析”相关的资料有哪些?“电磁感应选择题及答案解析”相关的范文有哪些?怎么写?下面是小编为您精心整理的“电磁感应选择题及答案解析”相关范文大全或资料大全,欢迎大家分享。
电磁感应习题(答案解析)
电磁感应
【典型例题】
[例1] 两圆环A、B置于同一水平面上,其中A为均匀带电绝缘环,B为导体环。当A以如图所示的方向绕中心转动的角速度发生变化时,B中产生如图所示方向的感应电流,则( )
例1
例2
A. A可能带正电且转速减小 B. A可能带正电且转速增大
C. A可能带负电且转速减小 D. A可能带负电且转速增大
解析:由题目所给的条件可以判断,感应电流的磁场方向垂直于纸面向外,根据楞次定律,原磁场的方向与感应电流的磁场相同时是减少的,环A应该做减速运动,产生逆时针方向的电流,故应该带负电,故选项C是正确的,同理可得B是正确的。答案:BC
[例2] 图中MN、GH为平行导轨,AB、CD为跨在导轨上的两根横杆,导轨和横杆均为导体。有匀强磁场垂直于导轨所在的平面,方向如图,用I表示回路的电流。
A. 当AB不动而CD向右滑动时,且沿顺时针方向
B. 当AB向左、CD向右滑动且速度大小相等时,I =0
C. 当AB、CD都向右滑动且速度大小相等时,I =0
D. 当AB、CD都向右滑动,且AB速度大于CD时,
解析:当AB不动而CD向右滑动时,
的感应电动势同向,故,但电流方向为逆时针,A错;当AB向左,CD向右滑动时
电磁感应答案
电磁场(三) 自感、互感、能量
专业 班级 学号 姓名 一、选择题
1、自感为 0.25 H的线圈中,当电流在(1/16) s内由2 A均匀减小到零时,线圈中自感电动势的大小为:
--2
(A) 7.8 ×103 V. (B) 3.1 ×10 V.
(C) 8.0 V. (D) 12.0 V. [ ]
2、对于单匝线圈取自感系数的定义式为L =??/I.当线圈的几何形状、大小及周围磁介质分
布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数L (A) 变大,与电流成反比关系. (B) 变小. (C
电磁感应答案
电磁场(三) 自感、互感、能量
专业 班级 学号 姓名 一、选择题
1、自感为 0.25 H的线圈中,当电流在(1/16) s内由2 A均匀减小到零时,线圈中自感电动势的大小为:
--2
(A) 7.8 ×103 V. (B) 3.1 ×10 V.
(C) 8.0 V. (D) 12.0 V. [ ]
2、对于单匝线圈取自感系数的定义式为L =??/I.当线圈的几何形状、大小及周围磁介质分
布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数L (A) 变大,与电流成反比关系. (B) 变小. (C
电磁感应经典大题及答案
题量超大的题集,较有难度,答案详细,是很不错的电磁感应习题哦。
电磁感应经典习题
1.如图10所示,匀强磁场区下边界是水平地面,上边界与地面平行,相距h=1.0m,两个正方形金属线框P、Q在同一竖直平面内,与磁场方向始终垂直。P的下边框与地面接触,上边框与绝缘轻线相连,轻线另一端跨过两个定滑轮连着线框Q。同时静止释放P、Q,发现P全部离开磁场时,Q还未进入磁场,而且当线框P整体经过磁场区上边界时,一直匀速运动,当线框Q整体经过磁场区上边界时,也一直匀速运动。若线框P的质量m1 0.1kg、边长L1 0.6m、总电阻R1 4.0Ω,线框Q的质量m2 0.3kg、边长L2 0.3m、总电阻
R2 1.5Ω忽略一切摩擦和空气阻力,重力加速度g 10m/s2。求:
(1)磁感应强度的大小?
(2)上升过程中线框P增加的机械能的最大值?
2.如图13甲所示,一边长L=2.5m、质量m=0.5kg的正方形金属线框,放在光滑绝缘的水平面上,整个装置放在方向竖直向上、磁感应强度B=0.8T的匀强磁场中,它的一边与磁场的边界MN重合。在水平力F作用下由静止开始向左运动,经过5s线框被拉出磁场。测得金属线框中的电流随时间变化的图像如乙图所示,在金属线框被拉出的过程中。
(1)
第9讲 电磁感应现象及电磁感应规律的应用
第9讲 电磁感应现象及电磁感应规律的应用
主要题型:选择题或计算题 难度档次:
选择题中等难度题、计算题难度较大.电磁感应知识点较少,一般与电路知识、安培力进行简单的结合,或定性分析、或定量计算,通常涉及4~5个知识点.
电磁感应中的计算题综合了力学,电学、安培力等知识,难度较大,尤其是导体棒模型和线框模型.
高考热点
1.感应电流
①闭合电路的部分导体在磁场内做??
(1)产生条件? 切割磁感线运动
??②穿过闭合电路的 发生变化
??右手定则:常用于情况①
(2)方向判断?
?楞次定律:常用于情况②?
阻碍磁通量的变化?增反减同???
(3)“阻碍”的表现?阻碍物体间的 ?来拒去留?
??阻碍 的变化?自感现象?2.感应电动势的计算
ΔΦ
(1)法拉第电磁感应定律:E=n.若B变,而S不变,则E=
Δt____________;若S变,而B不变,则E=____________,常用于计算________电动势.
(2)导体垂直切割磁感线:E=Blv,主要用于求电动势的________值.
(3)如图所示,导体棒Oa围绕棒的一端O在垂直磁场的平面内做匀速圆周运动而切割磁感线产生的电动势E=________.
3.电磁感应综合问题中运动的动态
电磁感应复习
电磁感应复习
1.楞次定律
感应电流总具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
楞次定律解决的是感应电流的方向问题。它关系到两个磁场:感应电流的磁场(新产生的磁场)和引起感应电流的磁场(原来就有的磁场)。前者和后者的关系不是“同向”或“反向”的简单关系,而是“增反减同”的关系。
2.对“阻碍”意义的理解:
(1)阻碍原磁场的变化。“阻碍”不是阻止,而是“延缓”(2)阻碍的是磁通量的变化,而不是原磁场本身,如果原磁场不变化,即使它再强,也不会产生感应电流.
(3)阻碍不是相反(4)由于“阻碍”,导致其它形式的能转化为电能.因此楞次定律是能量转化和守恒定律在电磁感应中的体现.
3.楞次定律的应用步骤
楞次定律的应用应该严格按以下四步进行:①确定原磁场方向;②判定原磁场如何变化(增大还是减小);③确定感应电流的磁场方向(增反减同);④根据安培定则判定感应电流的方向。
4.解法指导:(1)运用楞次定律处理问题的思路 (a)判断感应电流方向类问题的思路
运用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,即为: ①明确原磁场:弄清原磁场的方向及磁通量的变化情况.
②确定感应磁场:即根据楞次定律中的\阻碍\
电磁感应现象
电磁感应现象
教学目的:1、启发学生观察实验现象,从中分析归纳通过磁场产生电流的条确件,理解电
磁感应现象本质。
2、培养学生运用所学知识,独立分析问题的能力。
3、启发学生观察实验现象从中分析感应电流的方向与磁场方向和导线运动方向有关;掌握右手定则
教学重点:感应电流的产生条件的得出。 教学难点:正确理解感应电流的产生条件。 教学关键:实验演示。
教学仪器:电池组,电键,导线,大磁针,矩形线圈,碲形磁铁,条形磁铁,原副线圈,演
示用电流表等。
教学过程: 新课引入:
演示实验:奥斯特实验 提问引导:(1)这个实验说明了什么? (2)这个实验架起了一座连通电和磁的桥梁,此后人们对电能生磁已深信不疑,
但沿相反方向能否走通呢?即磁能否生电呢?
引入新课:我们这节课就来研究这个问题——电磁感应现象 新课教学:
1、引言:在磁可否生电这个问题上,英国物理学家法拉第坚信,电与磁决不孤立,有着密切的联系。为此,他做了许多实验,把导线放在各种磁场中想得到电流需要一定的条件,他以坚韧不拔的意志历时10年,终于找到了这个条件,从而开辟了物理学又一崭新天地。 2、
电磁感应(一)
电磁感应(一)
12-1-1. 如图所示,一矩形金属线框,以速度v从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I以顺时针方向为正)
I
[ ]
(A) O I (C)O
12-1-2. 一无限长直导体薄板宽为l,板面与z轴垂 直,板的长度方向沿y轴,板的两侧与一个伏特计相接,
?? v ?BI (B) tOIO(D) t t t
z V ?B ??如图.整个系统放在磁感强度为B的均匀磁场中,B的
?方向沿z轴正方向.如果伏特计与导体平板均以速度v (A) 0. (B)
y 向y轴正方向移动,则伏特计指示的电压值为 l 1vBl. 2 (C) vBl. (D) 2vBl. [ ]
12-1-3. 如图所示,矩形区域为均匀稳
电磁感应现象
电磁感应现象
教学目的:1、启发学生观察实验现象,从中分析归纳通过磁场产生电流的条确件,理解电
磁感应现象本质。
2、培养学生运用所学知识,独立分析问题的能力。
3、启发学生观察实验现象从中分析感应电流的方向与磁场方向和导线运动方向有关;掌握右手定则
教学重点:感应电流的产生条件的得出。 教学难点:正确理解感应电流的产生条件。 教学关键:实验演示。
教学仪器:电池组,电键,导线,大磁针,矩形线圈,碲形磁铁,条形磁铁,原副线圈,演
示用电流表等。
教学过程: 新课引入:
演示实验:奥斯特实验 提问引导:(1)这个实验说明了什么? (2)这个实验架起了一座连通电和磁的桥梁,此后人们对电能生磁已深信不疑,
但沿相反方向能否走通呢?即磁能否生电呢?
引入新课:我们这节课就来研究这个问题——电磁感应现象 新课教学:
1、引言:在磁可否生电这个问题上,英国物理学家法拉第坚信,电与磁决不孤立,有着密切的联系。为此,他做了许多实验,把导线放在各种磁场中想得到电流需要一定的条件,他以坚韧不拔的意志历时10年,终于找到了这个条件,从而开辟了物理学又一崭新天地。 2、