一元二次方程利润问题公式

“一元二次方程利润问题公式”相关的资料有哪些?“一元二次方程利润问题公式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“一元二次方程利润问题公式”相关范文大全或资料大全,欢迎大家分享。

利润问题:一元二次方程含答案

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

练习2:利润问题(一元二次方程应用)

1、某商场购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个.根据销售经验,售价每提高1元.销售量相应减少10个.

(1)假设销售单价提高x元,那么销售每个篮球所获得的利润是________元;这种篮球每月的销售量是_________个.(用含x的代数式表示)(4分)

(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大

利润,此时篮球的售价应定为多少元?(8分)

答案:(1)10?x,500?10x; (2)设月销售利润为y元,

由题意y??10?x??500?10x?, 整理,得y??10?x?20??9000. 当x?20时,y的最大值为9000,

220?50?70.

答:8000元不是最大利润,最大利润为9000元,此时篮球的售价为70元.

2.某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,以统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x(角),零售店每天销售这种面

一元二次方程的应用(销售利润问题)

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

“微课”教学设计说明

微课名称 授课教师姓名 录制工具 一元二次方程的应用(销售利润问题) 王艳花 单位 河北省保定市涞源县第三中学 Camtasia Studio9.0 本微课讲解一元二次方程的应用中的销售问题,主要利用PPT展示讲解课程内容,利用销售利润问题中的公式,讲解实际问题中降价后销量提升之间的数量关系,进而根据实际意义进行根的取舍。 微课设计简介 微课教学设计内容 通过对一元二次方程应用问题的学习和研究,让学生体验数学建模教学目标 的过程,从而学会发现、提出日常生活、生产或其他学科中可以利用一元二次方程来解决的实际问题,并正确地用语言表述问题及其解决过程. 发现利润问题中的等量关系,将实际问题提炼成数学问题并列一元二次方程解利润问题 1、知识回顾 列方程解一元二次方程的应用的步骤: 审题、设未知数、列方程、解方程、验根,答 2、在销售利润问题中的常用公式 单个利润 = 售价 - 进价 总利润 = 单个利润 × 总销量 3、例题讲评 某品牌耳机销售一副的利润是150元,每月销量60副. 市场调查后发现,每降价1元,平均每月可多卖出1.2副,耳机

一元二次方程的应用(销售利润问题)

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

“微课”教学设计说明

微课名称 授课教师姓名 录制工具 一元二次方程的应用(销售利润问题) 王艳花 单位 河北省保定市涞源县第三中学 Camtasia Studio9.0 本微课讲解一元二次方程的应用中的销售问题,主要利用PPT展示讲解课程内容,利用销售利润问题中的公式,讲解实际问题中降价后销量提升之间的数量关系,进而根据实际意义进行根的取舍。 微课设计简介 微课教学设计内容 通过对一元二次方程应用问题的学习和研究,让学生体验数学建模教学目标 的过程,从而学会发现、提出日常生活、生产或其他学科中可以利用一元二次方程来解决的实际问题,并正确地用语言表述问题及其解决过程. 发现利润问题中的等量关系,将实际问题提炼成数学问题并列一元二次方程解利润问题 1、知识回顾 列方程解一元二次方程的应用的步骤: 审题、设未知数、列方程、解方程、验根,答 2、在销售利润问题中的常用公式 单个利润 = 售价 - 进价 总利润 = 单个利润 × 总销量 3、例题讲评 某品牌耳机销售一副的利润是150元,每月销量60副. 市场调查后发现,每降价1元,平均每月可多卖出1.2副,耳机

一元二次方程应用专题--利润问题(含答案)

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

一元二次方程应用专题--利润问题

学校:__________ 班级:__________ 姓名:__________

1. 某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多

少株?设每盆多植x株,则可以列出的方程是()

A.(3+x)(4?0.5x)=15

B.(x+3)(4+0.5x)=15

C.(x+4)(3?0.5x)=15

D.(x+1)(4?0.5x)=15

2. 某商场以10元/件的进价新进一批商品,根据以往的销售经验知,当售价定为15元/

件时,每天可售出商品200件,且售价每提高2元,每天将减少售出商品10件.商场销

售该商品每天的利润为650元,求该商品的售价是多少?若设商品售价为x元/件,则

可列出的一元二次方程是( )

A.[200?10(x?15)](x?15)=650

B.[200?10(x?15)](x?10)=650

×10)(x?15)=650

C.(200?x?15

2

×10)(x?10)=650

D.(200?x?15

2

3. 某种文化衫,平均每天销售40件,每件盈利20元,由于换季现准备降价销售,若每

件降价0.5元,

一元二次方程教案

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

学大教育个性化辅导教案

等于 0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. (3)配方法: 例 3

x2 6 x 4 0

解:x 2 6 x 4 x 2 6 x 32 4 32 ( x 3) 2 5 x 3 5 x1 5 3, x2 5 3.就是把一元二次方程转化为可以直接直接开平方的方法。 教师提问三:那同学们又能说说步骤吗? 用配方法解一元二次方程

ax 2 bx c 0 a 0

的一般步骤是: ①化二次项系数为 1, 即方程两边同时除以二次

项系数;②移项,使方程左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上一次项系数一半的 平方;④化原方程为 ( x m) n 的形式;⑤如果 n 0 ,就可以用直接开平方求出方程的解,如果 n<0,则原方2

程无解. (4)公式法:把一元二次方程化成一般形式,然后公式计算。 一元二次方程 ax bx c 0(a 0) 的求根公式是:2

x

b b 2 4ac 2 (b 4ac 0). 2a

例4 解:

x2 x

公式法解一元二次方程说课稿

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

《解一元二次方程—公式法》说课稿

一、说教材

1、教材的地位与作用

《一元二次方程》是人教版《义务教育新课程标准实验教科书,数学·九年级(上册)》第22章第1节的内容,共两课时。本节是第一课时,是一元二次方程的导入课,主要内容是介绍一元二次方程的概念和一般形式,它为进一步学习一元二次方程解法及应用起到了铺垫作用。

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过的实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习二次函数等知识的基础。此外,学习一元二次方程对其它学科也有十分重要的作用。

2、教学目标

根据本节课的地位、作用及其内容,结合学生实际和学生认知发展水平,确定如下教学目标:

[知识目标] 理解一元二次方程求根公式的推导过程,了解公式法的概念,使学生熟练地应用求根公式解一元二次方程。

[能力目标]经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界的有效数学模型,增强学生分折问题和解决问题的能力及应用数学的意识;通过概念教学,培养学生的观察类比、归纳能力。

[情感目标]在探索活动中,培养学生合作交流的意识,体验成功喜悦,增强自信心。 3、教学重点与难点 从以

公式法解一元二次方程教案

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

公式法解一元二次方程

一、学情分析:本节是在学生已经掌握了配方法解一元二次方程的基

础上,从问题入手,推导求根公式,并能用公式法解简单系数的一元

二次方程。

二、教学目标

(1)知识目标

1.理解求根公式的推导过程和判别公式;

2.使学生能熟练地运用公式法求解一元二次方程.

(2)能力目标

1.通过由配方法推导求根公式,培养学生推理能力和由特殊到一

般的数学思想.

2.结合的使用求根公式解一元二次方程的练习,培养学生运用公

式解决问题的能力,全面培养学生解方程的能力,使学生解方程

的能力得到切实的提高 。

(3)情感态度

让学生体验到所有一元二次方程都能运用公式法去解,形成全面

解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数

学的情感.

三、教学的重、难点及教学设计

(1)教学的重点

1.掌握公式法解一元二次方程的一般步骤.

2.熟练地用求根公式解一元二次方程。

(2)教学的难点:

理解求根公式的推导过程及判别公式的应用。

四.教学方法

在教学中由特殊的解法(配方法)引导探究一般形式一元二次方

程的解的形式展开,利用学生已有的知识,让学生多交流,主动参与

到教学活动中来,让学生处于主导地位。通过比较合理的问题设计、

小组讨论形式让学生更好的掌握知识。

五、教具准备

彩色粉笔、幻灯片等。

六、教

一元二次方程复习

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

用于期末复习

杨家中学2010-2011年度九年级上之一元二次方程复习

一、选择题 1.(2010江苏苏州)下列四个说法中,正确的是 A

.一元二次方程x2 4x 5

2有实数根;

B

.一元二次方程x2 4x 5 2 C

.一元二次方程x2 4x 5 3

有实数根;

D.一元二次方程x2+4x+5=a(a≥1)有实数根.

3.(2010安徽芜湖)关于x的方程(a -5)x2-4x-1=0有实数根,则a满足( )

A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5 4.

5.(10湖南益阳)一元二次方程ax2

bx c 0(a 0)有两个不相等...

的实数根,则b2

4ac满足的条件是

A.b2 4ac=0 B.b2 4ac>0 C.b2 4ac<0 D.b2 4ac≥0

6.(2010山东日照)如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是

(A)-3,2 (B)3,-2 (C)2,-3 (D)2,3 7.(2010四川眉山)已知方程x2 5x 2 0的两个解分别为x1、x

公式法解一元二次方程教案

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

公式法解一元二次方程

一、学情分析:本节是在学生已经掌握了配方法解一元二次方程的基

础上,从问题入手,推导求根公式,并能用公式法解简单系数的一元

二次方程。

二、教学目标

(1)知识目标

1.理解求根公式的推导过程和判别公式;

2.使学生能熟练地运用公式法求解一元二次方程.

(2)能力目标

1.通过由配方法推导求根公式,培养学生推理能力和由特殊到一

般的数学思想.

2.结合的使用求根公式解一元二次方程的练习,培养学生运用公

式解决问题的能力,全面培养学生解方程的能力,使学生解方程

的能力得到切实的提高 。

(3)情感态度

让学生体验到所有一元二次方程都能运用公式法去解,形成全面

解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数

学的情感.

三、教学的重、难点及教学设计

(1)教学的重点

1.掌握公式法解一元二次方程的一般步骤.

2.熟练地用求根公式解一元二次方程。

(2)教学的难点:

理解求根公式的推导过程及判别公式的应用。

四.教学方法

在教学中由特殊的解法(配方法)引导探究一般形式一元二次方

程的解的形式展开,利用学生已有的知识,让学生多交流,主动参与

到教学活动中来,让学生处于主导地位。通过比较合理的问题设计、

小组讨论形式让学生更好的掌握知识。

五、教具准备

彩色粉笔、幻灯片等。

六、教

一元二次方程的解法

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

一元二次方程的解法 一元二次方程的解法

一、知识要点:

一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基

础,应引起同学们的重视。

一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2

的整式方程。

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解

法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。

二、方法、例题精讲:

1、直接开平方法:

直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的

方程,其解为x=m± .

例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11

分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以

此方程也可用直接开平方法解。

(1)解:(3x+1)2=7×

∴(3x+1)2=5

∴3x+1=±(注意不要丢解)

∴x=

∴原方程的解为x1=,x2=

(2)解: 9x2-24x