九上数学正弦余弦教学视频

“九上数学正弦余弦教学视频”相关的资料有哪些?“九上数学正弦余弦教学视频”相关的范文有哪些?怎么写?下面是小编为您精心整理的“九上数学正弦余弦教学视频”相关范文大全或资料大全,欢迎大家分享。

九下7.2正弦余弦(2)

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

§7.2 正弦、余弦(2)---- [ 教案]

备课时间: 主备人:

班级___________________姓名________________________学号__________ 【课前复习】:

【新课导入】:

如图,在Rt△ABC中, ∠C=90o, AC=12, BC=5. 求: sinA、cosA、sinB、cosB的值.

你发现sinA与cosB 、 cosA与sinB的值有什么关系吗? 结论:

【典型例题】: 1. 比较大小

若?A??B?90?sinA=cosBcosA=sinB

2.已知α为锐角:

12

(1) sin α= ,则cosα=______,tanα=______,

(2) cosα= 1 ,则sinα=______,tanα=______,

2

1(3)tanα= ,则sinα=______,cosα=______,

2

3.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CD=8,AC=10 (1)求锐角A、B的正弦、余弦: (2)求AB、BD的长

4.如图,在△ABC中, ∠C=90o,D是BC的中点,且

《正弦函数、余弦函数的图象》教学设计

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

《正弦函数、余弦函数的图象》教学设计

一、教材依据

人民教育出版社普通高中课程标准实验教科书《数学(必修④)》A版,第一章三角函数,第1.4三角函数的图象与性质,第1.4.1正弦函数、余弦函数的图象.

二、设计思想

本着加强学生对数学基础知识与基本技能的掌握,提高学生提高数学地提出、分析和解决问题的能力,增强学生对学习数学的兴趣,从而形成锲而不舍的钻研精神和科学态度等指导思想。为学生今后学习、工作、生活打下良好的数学基础,形成良好的数学素养,发展数学应用意识和创新意识,以学生为主体、教师为主导的教学理念等为设计理念。

本节课是在学生已经学习了任意三角函数的定义,三角函数线,三角函数的诱导公式等知识基础上进行学习的,主要是对正弦函数和余弦函数的图象进行系统的研究。正弦、余弦函数是继前面《数学(必修①)》学过的指数函数、对数函数、幂函数的函数内容,也是后面学习三角函数的性质的重要基础依据,及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础。所以说本节课的内容对知识的掌握起到了承上启下的作用。 三、教学目标 (一)知识与能力

1.正弦函数与余弦函数图象的作法,培养学生观察能力;

2.正弦函数与余弦函数图象之间的关系,提高学生分析问题能力;

《正弦函数、余弦函数的图象》教学设计

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

《正弦函数、余弦函数的图象》教学设计

一、教材依据

人民教育出版社普通高中课程标准实验教科书《数学(必修④)》A版,第一章三角函数,第1.4三角函数的图象与性质,第1.4.1正弦函数、余弦函数的图象.

二、设计思想

本着加强学生对数学基础知识与基本技能的掌握,提高学生提高数学地提出、分析和解决问题的能力,增强学生对学习数学的兴趣,从而形成锲而不舍的钻研精神和科学态度等指导思想。为学生今后学习、工作、生活打下良好的数学基础,形成良好的数学素养,发展数学应用意识和创新意识,以学生为主体、教师为主导的教学理念等为设计理念。

本节课是在学生已经学习了任意三角函数的定义,三角函数线,三角函数的诱导公式等知识基础上进行学习的,主要是对正弦函数和余弦函数的图象进行系统的研究。正弦、余弦函数是继前面《数学(必修①)》学过的指数函数、对数函数、幂函数的函数内容,也是后面学习三角函数的性质的重要基础依据,及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础。所以说本节课的内容对知识的掌握起到了承上启下的作用。 三、教学目标 (一)知识与能力

1.正弦函数与余弦函数图象的作法,培养学生观察能力;

2.正弦函数与余弦函数图象之间的关系,提高学生分析问题能力;

高二数学正弦余弦定理测试题

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

余弦定理训练题

1.在△ABC中,已知a=4,b=6,C=120°,则边c的值是( )

A.8 B.217

C.62 D.219

解析:选D.根据余弦定理,c2=a2+b2-2abcos C=16+36-2×4×6cos 120°=76,c=219.

2.在△ABC中,已知a=2,b=3,C=120°,则sin A的值为( )

A.5719 B.217

C.338 D.-5719

解析:选A.c2=a2+b2-2abcos C

=22+32-2×2×3×cos 120°=19.

∴c=19.

由asin A=csin C得sin A=5719.

3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为__________.

解析:设底边边长为a,则由题意知等腰三角形的腰长为2a,故顶角的余弦值为4a2+4a2-a22 2a 2a=78.

答案:78

4.在△ABC中,若B=60°,2b=a+c,试判断△ABC的形状.

解:法一:根据余弦定理得

b2=a2+c2-2accos B.

∵B=60°,2b=a+c,

∴(a+c2)2=a2+c2-2a

初中数学最新-九年级数学正弦和余弦的相互关系公式 精品

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

正弦和余弦的相互关系公式教案

教学目标

1.使学生理解正、余弦相互关系的两个公式的推导过程,理解公式成立的条件,并能利用它们及其变形公式解答一些基本问题;

2.通过公式的推导过程,培养学生从特殊到一般提出猜想和发现问题的能力;

3.培养学生运用知识结构总结问题的能力. 教学重点和难点

公式的推导和应用是重点;而公式的应用又是难点.

教学过程设计

一、从学生原有的认知结构提出问题

(投影)问:直角三角形有什么性质?(图6-13) ①c>a,c>b

答:(1)边的关系:②a+b>c,…

③a2+b2=c2.

(2)角的关系:∠A+∠B=90°.

(3)边角关系:sinA=a/c,cosA=b/c,…

教师归纳指出:由此可见,在一个直角三角形中,由于三边之间,两个锐角之间和边角之间都有一定的关系,而正弦和余弦又是表示直角边和斜边的比值,因此自然要问:正弦和余弦之间有什么样的相互关系?这就是我们今天所要学习的问题.(板书课题)

二、互为余角的正、余弦相互关系公式的教学过程 1.复习特殊角三角函数值. (边问边按下列格式打出投影片

sin30

1正弦定理余弦定理

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

正弦定理 余弦定理

一、一周知识概述

本周主要学习了正弦定理、余弦定理的推导及其应用,正弦定理是指在一个三角形

中,各边和它所对角的正弦的比相等.即余弦定理是指三角形任何

一边的平方等于其它两边平方的和减去这两边与它们夹角的余弦的积的两倍,即a2=b2+c2-2bccosA,b2=c2+a2-2cacosB, c2=a2+b2-2abcosC.通过两定理的学习,掌握正弦定理和余弦定理,并能利用这两个定理去解斜三角形,学会用计算器解决解斜三角形的计算问题,熟悉两定理各自解决不同类型的解三角形的问题.认识在三角形中,已知两边和其中一边的对角解三角形,产生多解的原因,并能准确判断解的情况. 二、重点知识讲解 1、三角形中的边角关系

在△ABC中,设角A、B、C的对边分别为a、b、c,则有 (1)角与角之间的关系:A+B+C=180°; (2)边与角之间的关系:

正弦定理:

余弦定理:a2=b2+c2-2bccosA b2=c2+a2-2accosB c2=a2+b2-2abcosC 射影定理:a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA

2、正弦定理的另三种表示形式:

3、余弦定理的另一种表示形式:

4、正弦定

正弦定理和余弦定理

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

一、选择题

1.在△ABC中,A=60°,B=75°,a=10,则c=( )

A.52

106 3

2、在 ABC中,已知b B.2 D.6 2,c 1,B 45 ,则a=( )

2 1 D. 3 2 A. 6 2 B. 26 2 C. 2

3、在 ABC中,若a 2bsinA,则B= ( )

A. 30 B. 60 C. 30或150 D. 60或120

2224、在 ABC中,已知a c b ab,则 C ( )

A. 60 B. 45或135 C. 120 D. 30

5、在△ABC中,sin2A=sin2B+sin2C,则△ABC为( )

A.直角三角形 B.等腰直角三角形

C.等边三角形 D.等腰三角形

6、在 ABC中,a:b:c 3:5:7,则 ABC的最大角是 ( )

A. 30 B. 60 C. 90 D. 120

37.在△ABC中,已知B=45°,c=2,b=,则

二倍角的正弦、余弦、正切公式教学设计

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

二倍角的正弦、余弦、正切公式教学设计

3.1.3 二倍角的正弦、余弦、正切公式片段教学设计

(人教A版本必修4 第三章第一节)

教材的地位及作用:

1.本节内容是三角函数中最基础的知识之一。它是在学生学过三角函数的诱导公式和两角和与差的正弦、余弦、正切公式之后的又一重要公式。

2.本节在本章中处于承上启下的地位。

3.三角函数是高考的热点问题,而二倍角的正弦、余弦、正切公式是三角函数求值、化简及证明必备的基础知识点之一。它为研究三角函数图象及性质等问题提供了又一必备的要素。

本节教材的作用则主要是可以培养学生逻辑思维能力和化归的重要数学思想方法,使学生体验的数学知识发生发展(形成)的过程,增进学生对数学知识的理解,增强学生学数学的兴趣和信心。

教学目标:

1、知识目标:以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公

式,掌握二倍角公式,运用二倍角公式解决有关问题。

2、能力目标:培养学生观察分析问题的能力,寻找数学规律的能力,同时注意渗透由一般

到特殊的化归的数学思想及问题转化的数学思想。

3、德育目标:培养学生认真参与、积极交流的主体意识,锻炼学生善于发现问题的规律和

及时解决问题的态度。

教学重点:二倍角公式推导及其应用.

教学难点:如何灵活应用和、差

正弦定理、余弦定理基础练习

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

正弦定理、余弦定理

基础练习

1.在△ABC中:

(1)已知A?45?、B?30?、a?53,求b;

(2)已知B?75?、C?45?、a?6,求c. 2.在△ABC中(角度精确到1°):

(1)已知b?15、c=7、B=60°,求C; (2)已知a?6、b=7、A=50°,求B. 3.在△ABC中(结果保留两个有效数字): (1)已知a=5、b=7、C=120°,求c;

(2)已知b?33、c=7、A=30°,求a. 4.在△ABC中(角度精确到1°): (1)已知a?6、b=7、c?9,求A; (2)已知a?33、b?4、c?79,求C.

5.根据下列条件解三角形(角度精确到1°,边长精确到0.1): (1)A?37?,B?60?,a?5; (2)A?40?,B?45?,c?7; (3)B?49?,a?5,b?3; (4)C=20 ,a=5,c=3; (5)a?4,b?7,C?80?; (6)a?10,b?13,c?14. 6.选择题:

(1)在△ABC中,下面等式成立的是( ).

A.abcosC?bccosA B.absin

必修5 正弦定理、余弦定理

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

【本讲教育信息】

一. 教学内容:

必修5 正弦定理、余弦定理

二、教学目标

(1)熟练的掌握正弦定理、余弦定理及其简单的应用。

(2)在正、余弦定理应用过程中,体会利用函数与方程的数学思想处理已知量与未知量的关系。

利用等价转化的数学思想、分类讨论的数学思想应用正弦定理、余弦定理解题。

三、知识要点分析

1、正弦定理的有关知识(设△ABC 的,,A B C ∠∠∠所对的边是a ,b ,c ,外接圆半径是R ) 正弦定理:2sin sin sin a b c R A B C ===,

由正弦定理得(i )2sin sin sin sin sin sin a b c a b c R A B C A B C ++====++

(ii )::sin :sin :sin a b c A B C =。

正弦定理应用:(1)已知一边和两角求其余的边和角。

2、三角形的面积公式

(1)1,(2a a S a h h a =

?是边上高)(h a 是a 边上的高)(2)111S sin sin sin 222ab C bc A ac B ===。 (3) 1(),(2S a b c r r =++?是内切圆半径) 3、余弦定理的有关知识。(设△A, B, C ABC ∠∠∠的三个角所