直角三角形的边角关系教案

“直角三角形的边角关系教案”相关的资料有哪些?“直角三角形的边角关系教案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“直角三角形的边角关系教案”相关范文大全或资料大全,欢迎大家分享。

直角三角形的边角关系

标签:文库时间:2024-11-17
【bwwdw.com - 博文网】

九年级数学教案讲例

八升九暑假讲义------直角三角形的边角关系

§ 1.1 从梯子的倾斜程度谈起 学习目标:

1.经历探索直角三角形中边角关系的过程. 理解锐角三角函数的意义

2.能够用sinA、cosA tanA表示直角三角形中两边的比,

3.体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题. 知识讲解:

[问题1]在直角三角形中,知道一边和一个锐角,你能求出其他的边和角吗?

[问题2]随着改革开放的深入,上海的城市建设正日新月异地发展,幢幢大楼拔地而起.70年代位于南京西路的国际饭店还一直是上海最高的大厦,但经过多少年的城市发展,“上海最高大厦”的桂冠早已被其他高楼取代,你们知道目前上海最高的大厦叫什么名字吗?你能应用数学知识和适当的途径得到金茂大厦的实际高度吗?

通过本章的学习,相信大家一定能够解决. 讲授新课

梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放的“陡”,那个梯子放的“平缓”,人们是如何判断的?“陡”或“平缓”是用来描述梯子什么的?请同学们看下图,并回答问题

(1)在图中,梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法?

(2)在下图中,梯子AB和EF哪个更陡?你是怎样判断的?

九年级数

直角三角形的边角关系讲义

标签:文库时间:2024-11-17
【bwwdw.com - 博文网】

这是一份分节讲解,然后综合复习的一份讲义,各节都配有例题和针对练习,最后有一份本章复习卷

直角三角形的边角关系讲义

第1节 从梯子的倾斜程度谈起

本节内容:

正切的定义 坡度的定义及表示(难点) 正弦、余弦的定义 三角函数的定义(重点)

1、正切的定义

例2 如图, 已知在Rt△ABC中,∠C=90°,CD⊥AB,AD=8,BD=4,求tanA的值。 B C

创造适合每一个孩子的教育 地址:罗湖区太白路松泉山庄松泉阁裙楼三楼

A

1

这是一份分节讲解,然后综合复习的一份讲义,各节都配有例题和针对练习,最后有一份本章复习卷

2、坡度的定义及表示(难点

例3 如图,拦水坝的横断面为梯形ABCD,坝顶宽BC为6m,坝高为3.2m,为了提高水坝的拦水能力,需要将水坝加高2m,并且保持坝顶宽度不变,迎水坡CD 的坡度不变,但是背水坡的坡度由原来的i=1:2变成i′=1:2.5,(有关数据在图上已注明). 求加高后的坝底HD的长为多少?

例4

在△ABC中,∠C=90°,BC=1,AC=2,求sinA、sinB、cosA、cosB的值。通过计算你有什么发现?请加以证明。

2 创造适合每一个孩子的教育

直角三角形教案

标签:文库时间:2024-11-17
【bwwdw.com - 博文网】

教 学 设 计

月 日 课题 教 学目 标 直角三角形 课时 2 课型 新授 知识技能: 了解勾股定理及其逆定理的证明方法、逆命题的概念。 过程方法: 经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感, 发展抽象思维. 情感与价值观: 在数学活动中,获得成功的体验,锻炼克服困难的意志,建立自信心. 教学重点 1.了解勾股定理及其逆定理的证明方法. 2.结合具体例子了解逆命题的概念,识别两个互逆命题.知道原命题成立,其逆命题不一定成立. 教学难点 1.勾股定理及其逆定理的证明方法. 2.对不是“如果??那么??”形式的逆命题的叙述. 教学方法 引导、探索法 重点难点分析 及 突破措 施 教具准 备 板书设 计 投影片 §1.2.1 直角三角形(一) 1.勾股定理及其逆定理利用公理及由其推导出的定理的证明方法. 2.互逆命题和互逆定理 § 1.2.2 直角三角形(二) 1.质疑: 问题:(1)两边及其中一边的对角对应相等的两个三角形全

第六讲 直角三角形的边角关系

标签:文库时间:2024-11-17
【bwwdw.com - 博文网】

望子成龙学校九(上)数学专用资料 锲而不舍,方能水滴石穿!

第六讲 直角三角形的边角关系

【基础知识精讲】

一、正弦与余弦,正切:

1、 在?ABC中,?C为直角,

锐角A的对边与斜边的比叫做?A的正弦,记作sinA,

sinA? 锐角A的邻边与斜边的比叫做?A的余弦,记作cosA. ?A的对边a??

斜边ccosA??A的邻边b? 斜边c 锐角?A的对边与邻边的比叫做?A的正切,记作tanA。 tanA??A的对边a= ?A的邻边b2、当?A为锐角时, 0?sinA?1,0?cosA?1,tan??0。 二、特殊角的正弦值与余弦值: 角度a 0° 30° 45° 60° 90° 函数

sina

cosa tan?

三、增减性:当0???90时, sin?、tan?随角度?的增大而增大;cos?、cot?随角度?的增大而减小。

四、互余两角之间的函数关系: 00sinA?cos(90??A)

2cosA?sin(90??A) tanA?(90??A)

2五、同角三角函

直角三角形的边角关系的应用(二)

标签:文库时间:2024-11-17
【bwwdw.com - 博文网】

青岛班课程

直角三角形的边角关系的应用(二)

学习目标:

1.认识仰角、俯角,进一步体会三角函数在解决实际问题过程中的应用.

2.体会解决此类问题的关键是把实际问题转化为数学问题,并通过作辅助线的方法转化成直角三角形来解。

学习重点:

体会三角函数在解决实际问题过程中的应用.

学习难点:

发展学生数学应用意识和解决问题的能力。

学习过程:

一、复习回顾

1、如右图:在Rt△ABC中,说出∠A、∠B的三角函数值

2、说出30°、45°、60°的三角函数值

3、测得某坡面垂直高度为2m, 坡面为4m,则坡度为_______,坡角

为______。

二、新课讲解

1、定义:仰角:

俯角:

右图:一人站在旗杆前,那么他看旗杆顶的仰角是__________

他看旗杆底的俯角是__________

2、例题:如图,A、 B两座楼相距30米,某同学在A楼家中观测B楼测得B楼的顶部仰角为45°,B楼的底部的俯角为30°,你能求出B楼的高吗?

练习: 1、右图:在甲楼A处测得乙楼顶的仰角为30°,测得乙楼

底的俯角为45°,两楼相距60米。

求两楼高度

2、右图:在甲楼A处测得乙楼顶的仰角为60°,测得乙楼底的俯角为45

直角三角形教案

标签:文库时间:2024-11-17
【bwwdw.com - 博文网】

教 学 设 计

月 日 课题 教 学目 标 直角三角形 课时 2 课型 新授 知识技能: 了解勾股定理及其逆定理的证明方法、逆命题的概念。 过程方法: 经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感, 发展抽象思维. 情感与价值观: 在数学活动中,获得成功的体验,锻炼克服困难的意志,建立自信心. 教学重点 1.了解勾股定理及其逆定理的证明方法. 2.结合具体例子了解逆命题的概念,识别两个互逆命题.知道原命题成立,其逆命题不一定成立. 教学难点 1.勾股定理及其逆定理的证明方法. 2.对不是“如果??那么??”形式的逆命题的叙述. 教学方法 引导、探索法 重点难点分析 及 突破措 施 教具准 备 板书设 计 投影片 §1.2.1 直角三角形(一) 1.勾股定理及其逆定理利用公理及由其推导出的定理的证明方法. 2.互逆命题和互逆定理 § 1.2.2 直角三角形(二) 1.质疑: 问题:(1)两边及其中一边的对角对应相等的两个三角形全

直角三角形教案

标签:文库时间:2024-11-17
【bwwdw.com - 博文网】

教 学 设 计

月 日 课题 教 学目 标 直角三角形 课时 2 课型 新授 知识技能: 了解勾股定理及其逆定理的证明方法、逆命题的概念。 过程方法: 经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感, 发展抽象思维. 情感与价值观: 在数学活动中,获得成功的体验,锻炼克服困难的意志,建立自信心. 教学重点 1.了解勾股定理及其逆定理的证明方法. 2.结合具体例子了解逆命题的概念,识别两个互逆命题.知道原命题成立,其逆命题不一定成立. 教学难点 1.勾股定理及其逆定理的证明方法. 2.对不是“如果??那么??”形式的逆命题的叙述. 教学方法 引导、探索法 重点难点分析 及 突破措 施 教具准 备 板书设 计 投影片 §1.2.1 直角三角形(一) 1.勾股定理及其逆定理利用公理及由其推导出的定理的证明方法. 2.互逆命题和互逆定理 § 1.2.2 直角三角形(二) 1.质疑: 问题:(1)两边及其中一边的对角对应相等的两个三角形全

第2讲 直角三角形边角关系的应用

标签:文库时间:2024-11-17
【bwwdw.com - 博文网】

第一部分 单元知识复习

第五章 三角形的边角关系第2讲 直角三角形边角关系的应用

考点梳理一、考试要求: 运用三角函数解决与直角三角形有关的简单 实际问题.二、广东省省卷近五年中考统计:考试 内容 解直角 三角形 的应用 2009 第15 题 6分 2010 2011 第17 题 7分 2012 第18 题 7分 2013 题型

解答

考点梳理三、知识梳理1.若直角三角形ABC中,∠C=90°,那么∠A、 ∠B、∠C、a、b、c中除∠C=90°外,其余5个元素 之间有如下关系: 2 2 2 a b c ; (1)勾股定理:____________ (2)两锐角的关系: ____________ A B 90 ; (3)边角关系 (即三个三角函数): A的邻边 b A的对边 a CosA = SinA = 斜边 c __________________ ;__________________ ; 斜边 c A的对边 b tan A = __________________ .所以,只要知道其中的 A的邻边 c 边 2 个元素 (至少有一个是______) ______ ,就可以求出 3 其余_

直角三角形三边的关系教案

标签:文库时间:2024-11-17
【bwwdw.com - 博文网】

14.1.1直角三角形三边关系——勾股定理(1)

一、教学目标:

1.体验勾股定理的探索过程,掌握勾股定理用它解决身边与实际生活相关问题。 2.在学生经历观察、归纳、猜想、探索勾股定理过程中,发展合情推理能力,体会数形结合思想,并在探索过程中,发展学生的归纳、概括能力。

3.通过探索直角三角形的三边之间关系,培养学生积极参与、合作交流的意识,体验获得成功的喜悦,通过介绍勾股定理在中国古代的研究情况,提高学生民族自豪感,激发学生热爱祖国、奋发学习的热情。 二、教学重点、难点:

重点:探索和验证勾股定理过程; 难点:通过面积计算探索勾股定理。 三、教学方法及学法指导:

采用合作探究发现式的教学方法,通过计算面积为学生设计一个数学实验的平台,培养学生动手实践能力和合作交流的意识。 四、教具准备

多媒体课 三角形纸片 五、教学过程:

(一).自学导纲 1、创设情境,导入课题

师:同学们,在电网改造中,电力工人为了让如图示的电线杆更加稳固,可以采用什么方法?请大家帮他想想办法。

生1:埋的更深一些。 生2:斜拉一根钢丝……

师:大家真聪明,能想出这么多方法。如果采用了 生2的方案,你的依据的什么? 生:三角形的稳定性。

师:如图示,电杆、钢

直角三角形全等的判定教案

标签:文库时间:2024-11-17
【bwwdw.com - 博文网】

直角三角形全等的判定

刘晓华

教学目的:

1、通过本节课的学习,进一步弄清全等三角形的判定定理:SAS、ASA、AAS、SSS。

2、通过探究,弄清直角三角形全等的判定定理:HL。

3、培养学生探究解决问题的能力和合作的品质。

教学要求:

1、熟练运用SAS、ASA、AAS、SSS。

2、理解并运用HL。

教学重点:引导学生分析、理解HL定理。

教学难点:熟练运用HL定理解决问题。

教学方法:探究、合作学习。

教学过程:

一、复习引入:

1、学生先说说三角形全等的判定定理有哪些?

2、做一做:

具有下列条件的Rt△ABC和Rt△A′B′C′是否全等。 ①AC=A′C′ ∠A=∠A′

②AC=A′C′ BC=B′C′

③AB=A′B′ ∠B=∠B′

④AC=A′C′ AB=A′B′

二、探究:已知Rt△ABC和Rt△A′B′C′,AC=A′C′,

AB=A′B′,它们全等吗?

推理过程:P.91

结论:斜边、直角边定理:HL

斜边和一条直角边对应相等的两个直角三角形全等。

三、例题讲解:P.91、例1

结论:角平分线的性质;三角形的内心。

四、练习:

1、判断下列说法是否正确,说明理由。

①②③④

2、如图:AC=AD,∠C=∠D=90°,你

能说明∠ABC与∠ABD为什么相等吗?

3、如