如何学好立体几何证明题
“如何学好立体几何证明题”相关的资料有哪些?“如何学好立体几何证明题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“如何学好立体几何证明题”相关范文大全或资料大全,欢迎大家分享。
立体几何证明题归类
空间直线、平面的平行与垂直问题
一、“线线平行”与“线面平行”的转化问题,“线面平行”与“面面平行”的转
化问题 知识点:
一)位置关系:平行:没有公共点.
相交:至少有一个公共点,必有一条公共直线,公共点都在公共直线上. 相交包括垂直相交和斜交.
二)平行的判定:
(1)定义:没有公共点的两个平面平行.(常用于反证)
(2)判定定理:若一个平面内的两条相交直线平行于另一平面,则这两个平面平行.(线面平行得面面平行)
(3)垂直于同一条直线的两个平面平行.(4)平行于同一个平面的两个平面平行.
(5)过已知平面外一点作这个平面的平行平面有且只有一个.三)平行的性质:
定义:两个平行平面没有公共点.(常用于反证)
性质定理一:若一个平面与两个平行平面都相交,则两交线平行.(面面平行得线线平行,用于判定两直线平行)性质定理二:两个平行平面中的一个平面内的所有直线平行于另一个平面.(面面平行得线面平行,用于判定线面平行)
一条直线垂直于两个平行平面中的一个平面,必垂直于另一个平面.(用来判定直线与平面垂直)
一般地,一条直线与两个平行平面所成的角相等,但反之不然.
夹在两个平行平面间的平行线段相等.特别地,两个平行平面间的距离处处相等.
(1)(2)(3)(4)(5)二、
如何学好立体几何
2 0 1 3年
第2 1期
S C I E N C E&T E C HN O L OG Y I N F O R MA T I O N
o教学研究0
科技信息
如何学好立体几何邓贵元 (上杭县才溪中学,福建上杭 3 6 2 3 0 0 )立体几何研究的对象是空间图形 .学习立体几何是把空间图形画最后以符号语言严谨,规范简洁地进行表达。 在平面上进行研究 .这给立体几何的学习增加了难度 .如何突破平面三种数学语言 .尤其重要的是符号语言的运用 .在几何计算和推思维限制,再现空间的想象思维,是学生学习时的最大难点。要学好立理论证中要求学生要养成运用符号语言的习惯 .这样可使解题过程简体几何关键应注意以几点。 洁清晰、严谨规范。掌握好这三种数学语言,能形成正确运用数学语言进行数学交流表达的能力。
1明确学习目标
立体几何的初步学习,将从对空间几何体的整体观察人手,认识空间几何图形的结构特征,需要学生采用直观感知、操作确认、思维辩在学习立体几何过程中,学生可以利用笔、直尺、书之类的东西 . 证、度量计算等方法认识和探索几何图形及其性质,注重培养和发展甚至用手掌、手指、教室中的桌椅、黑板等构建出一个空间图形的框空间想象能力推理论证能力运用图形语言进行交流的
高中数学立体几何证明题汇总
新课标立体几何证明题汇总
1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点 (1) 求证:EFGH是平行四边形
(2) 若BD=23,AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD所成的角。
A B
F C
G D
E H
证明:在?ABD中,∵E,H分别是AB,AD的中点∴EH//BD,EH?同理,FG//BD,FG?(2) 90° 30 °
考点:证平行(利用三角形中位线),异面直线所成的角
1BD 21BD∴EH//FG,EH?FG∴四边形EFGH是平行四边形。 22、如图,已知空间四边形ABCD中,BC?AC,AD?BD,E是AB的中点。 求证:(1)AB?平面CDE;
(2)平面CDE?平面ABC。
A E
BC?AC?证明:(1)??CE?AB
AE?BE?同理,
AD?BD???DE?AB
AE?BE?B
C
又∵CE?DE?E ∴AB?平面CDE (2)由(1)有AB?平面CDE
又∵AB?平面ABC, ∴平面CDE?平面ABC 考点:线面垂直,面面垂直的判定
D
3、如图,在正方体ABCD?A1B1C1D1中,E是AA1的中点,
高一数学常考立体几何证明题及答案
1、如图,已知空间四边形ABCD中,BC?AC,AD?BD,E是AB的中点。 求证:(1)AB?平面CDE; (2)平面CDE?平面ABC。
2、如图,在正方体ABCD?A1B1C1D1中,E是AA1的中点,
D A
D1
B
E
A C
BDE。 求证: AC1//平面
3、已知?ABC中?ACB?90,SA?面ABC,AD?SC,
B1
E C
A D
B SC
求证:AD?面SBC.
ADBCD1A1DOABB1C1O是底ABCD对角线的交点. 4、已知正方体ABCD?A1BC11D1,
求证:(1) C1O∥面AB1D1;(2)AC?面AB1D1. 1
5、正方体ABCD?A'B'C'D'中,求证: (1)AC?平面B'D'DB; (2)BD'?平面ACB'. 6、正方体ABCD—A1B1C1D1中. (1)求证:平面A1BD∥平面B1D1C;
(2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD.
7、四面体ABCD中,AC?BD,E,F分别为AD,BC的中点,且EF?CD1 A1 E D B1 C1 F G C
2?BDC?90, AC,A B 2
求证:BD?平面ACD
高一数学常考立体几何证明题及答案
1、如图,已知空间四边形ABCD中,BC?AC,AD?BD,E是AB的中点。 求证:(1)AB?平面CDE; (2)平面CDE?平面ABC。
2、如图,在正方体ABCD?A1B1C1D1中,E是AA1的中点,
D A
D1
B
E
A C
BDE。 求证: AC1//平面
3、已知?ABC中?ACB?90,SA?面ABC,AD?SC,
B1
E C
A D
B SC
求证:AD?面SBC.
ADBCD1A1DOABB1C1O是底ABCD对角线的交点. 4、已知正方体ABCD?A1BC11D1,
求证:(1) C1O∥面AB1D1;(2)AC?面AB1D1. 1
5、正方体ABCD?A'B'C'D'中,求证: (1)AC?平面B'D'DB; (2)BD'?平面ACB'. 6、正方体ABCD—A1B1C1D1中. (1)求证:平面A1BD∥平面B1D1C;
(2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD.
7、四面体ABCD中,AC?BD,E,F分别为AD,BC的中点,且EF?CD1 A1 E D B1 C1 F G C
2?BDC?90, AC,A B 2
求证:BD?平面ACD
立体几何证明8条定理
直线与平面平行的判定定理与性质定理 文字语言 图形语言 符号语言 判不在平面内的一条直线与此定定理 平面内的一条直线平行,则该直线与此平面平行(简记为线线平行?线面平行) 一条直线与一个平面平行,则过这条直线的任一平面与 ?a?α??l∥α l∥a?l?α性质定此平面的交线与该直线平行理 (简记为线面平行?线线平行) 平面与平面平行的判定定理与性质定理 文字语言 图形语言 ?a?β??a∥b α∩β=b?a∥α符号语言 判一个平面内的两条相交直线定定理 与另一个平面平行,则这两个平面平行(简记为线面平行?面面平行) ??a∩b=P??α∥β a∥β??b∥βb?αa?α性质如果两个平行平面同时和第α∥β定三个平面相交,那么它们的理 交线平行
?α∩γ=a??a∥b β∩γ=b?
直线与平面垂直的判定定理及性质定理
判定定理 文字语言 图形语言 符号语言 一条直线与平面内的两条相交直线都垂直,则该直线与此平面垂直 图形语言 a,b?αa∩b=Ol⊥al⊥b???l⊥α ?性质垂直于同一个平面的两条直定线平行 理
a⊥α???a∥b b⊥α?平面与平面垂直的判定定理及性质定理
文字语言 符号语言 判定
初中几何证明题思路
学习总结:中考几何题证明思路总结
几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。
一、证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两角相等
1.两全等三角形
初中几何证明题思路
学习总结:中考几何题证明思路总结
几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。
一、证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两角相等
1.两全等三角形
初中几何证明题思路
学习总结:中考几何题证明思路总结
几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。
一、证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两角相等
1.两全等三角形
立体几何选择题
???线????○???? ???线????○????
绝密★启用前
2015-2016学年度阜阳三中立体几何选择题
题号 得分
一 总分 第I卷(选择题)
请点击修改第I卷的文字说明 ??○ __○?___?_?___??__?:?号?订考_订_?___??___??___??:级?○班_○?___?_?__?_?___??:名?装姓装_?__?_?___??___??_:校?○学○????????外内????????○○????????评卷人 得分 一、选择题(题型注释)
1.【2015高考安徽,理5】已知m,n是两条不同直线,?,?是两个不同平面,则下列命题正确的是( )
(A)若?,?垂直于同一平面,则?与?平行 (B)若m,n平行于同一平面,则m与n平行
(C)若?,?不平行,则在?内不存在与?平行的直线
(D)若m,n不平行,则m与n不可能垂直于同一平面 2.【2015高考北京,理4】设?,?是两个不同的平面,m是直线且m??.“m∥?”是“?∥?”的( )
A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
3.【2015高考福建,理7】