一元二次方程的应用利润问题教案
“一元二次方程的应用利润问题教案”相关的资料有哪些?“一元二次方程的应用利润问题教案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“一元二次方程的应用利润问题教案”相关范文大全或资料大全,欢迎大家分享。
一元二次方程的应用(销售利润问题)
“微课”教学设计说明
微课名称 授课教师姓名 录制工具 一元二次方程的应用(销售利润问题) 王艳花 单位 河北省保定市涞源县第三中学 Camtasia Studio9.0 本微课讲解一元二次方程的应用中的销售问题,主要利用PPT展示讲解课程内容,利用销售利润问题中的公式,讲解实际问题中降价后销量提升之间的数量关系,进而根据实际意义进行根的取舍。 微课设计简介 微课教学设计内容 通过对一元二次方程应用问题的学习和研究,让学生体验数学建模教学目标 的过程,从而学会发现、提出日常生活、生产或其他学科中可以利用一元二次方程来解决的实际问题,并正确地用语言表述问题及其解决过程. 发现利润问题中的等量关系,将实际问题提炼成数学问题并列一元二次方程解利润问题 1、知识回顾 列方程解一元二次方程的应用的步骤: 审题、设未知数、列方程、解方程、验根,答 2、在销售利润问题中的常用公式 单个利润 = 售价 - 进价 总利润 = 单个利润 × 总销量 3、例题讲评 某品牌耳机销售一副的利润是150元,每月销量60副. 市场调查后发现,每降价1元,平均每月可多卖出1.2副,耳机
一元二次方程的应用(销售利润问题)
“微课”教学设计说明
微课名称 授课教师姓名 录制工具 一元二次方程的应用(销售利润问题) 王艳花 单位 河北省保定市涞源县第三中学 Camtasia Studio9.0 本微课讲解一元二次方程的应用中的销售问题,主要利用PPT展示讲解课程内容,利用销售利润问题中的公式,讲解实际问题中降价后销量提升之间的数量关系,进而根据实际意义进行根的取舍。 微课设计简介 微课教学设计内容 通过对一元二次方程应用问题的学习和研究,让学生体验数学建模教学目标 的过程,从而学会发现、提出日常生活、生产或其他学科中可以利用一元二次方程来解决的实际问题,并正确地用语言表述问题及其解决过程. 发现利润问题中的等量关系,将实际问题提炼成数学问题并列一元二次方程解利润问题 1、知识回顾 列方程解一元二次方程的应用的步骤: 审题、设未知数、列方程、解方程、验根,答 2、在销售利润问题中的常用公式 单个利润 = 售价 - 进价 总利润 = 单个利润 × 总销量 3、例题讲评 某品牌耳机销售一副的利润是150元,每月销量60副. 市场调查后发现,每降价1元,平均每月可多卖出1.2副,耳机
利润问题:一元二次方程含答案
练习2:利润问题(一元二次方程应用)
1、某商场购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个.根据销售经验,售价每提高1元.销售量相应减少10个.
(1)假设销售单价提高x元,那么销售每个篮球所获得的利润是________元;这种篮球每月的销售量是_________个.(用含x的代数式表示)(4分)
(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大
利润,此时篮球的售价应定为多少元?(8分)
答案:(1)10?x,500?10x; (2)设月销售利润为y元,
由题意y??10?x??500?10x?, 整理,得y??10?x?20??9000. 当x?20时,y的最大值为9000,
220?50?70.
答:8000元不是最大利润,最大利润为9000元,此时篮球的售价为70元.
2.某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,以统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x(角),零售店每天销售这种面
一元二次方程应用专题--利润问题(含答案)
一元二次方程应用专题--利润问题
学校:__________ 班级:__________ 姓名:__________
1. 某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多
少株?设每盆多植x株,则可以列出的方程是()
A.(3+x)(4?0.5x)=15
B.(x+3)(4+0.5x)=15
C.(x+4)(3?0.5x)=15
D.(x+1)(4?0.5x)=15
2. 某商场以10元/件的进价新进一批商品,根据以往的销售经验知,当售价定为15元/
件时,每天可售出商品200件,且售价每提高2元,每天将减少售出商品10件.商场销
售该商品每天的利润为650元,求该商品的售价是多少?若设商品售价为x元/件,则
可列出的一元二次方程是( )
A.[200?10(x?15)](x?15)=650
B.[200?10(x?15)](x?10)=650
×10)(x?15)=650
C.(200?x?15
2
×10)(x?10)=650
D.(200?x?15
2
3. 某种文化衫,平均每天销售40件,每件盈利20元,由于换季现准备降价销售,若每
件降价0.5元,
一元二次方程教案
学大教育个性化辅导教案
等于 0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. (3)配方法: 例 3
x2 6 x 4 0
解:x 2 6 x 4 x 2 6 x 32 4 32 ( x 3) 2 5 x 3 5 x1 5 3, x2 5 3.就是把一元二次方程转化为可以直接直接开平方的方法。 教师提问三:那同学们又能说说步骤吗? 用配方法解一元二次方程
ax 2 bx c 0 a 0
的一般步骤是: ①化二次项系数为 1, 即方程两边同时除以二次
项系数;②移项,使方程左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上一次项系数一半的 平方;④化原方程为 ( x m) n 的形式;⑤如果 n 0 ,就可以用直接开平方求出方程的解,如果 n<0,则原方2
程无解. (4)公式法:把一元二次方程化成一般形式,然后公式计算。 一元二次方程 ax bx c 0(a 0) 的求根公式是:2
x
b b 2 4ac 2 (b 4ac 0). 2a
例4 解:
x2 x
5.25 一元二次方程的应用
一元二次方程的应用
选择题
1.(2010?莆田)在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程
=10 C.
=10
3.(2007?衢州)用锤子以均匀的力敲击铁钉入木板.随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子的长度后一次为前一次的k倍(0<k<1).已知一个钉子受击3次后恰好全部进入木板,且第一次受
击后进入木板部分的铁钉长度是钉长的,设铁钉的长度为1,那么符合这一事实的一个方程是()
.
+k+k2=1 +k=1 C
k+k2=1
D.
+k=1
4.某厂一月份生产某机器100台,计划二、三月份共生产280台.设二、三月份每月的平均增长率为x,根据题意
5.元旦节班上数学兴趣小组的同学,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张
.
=45
角形的面积是
8
10.随着人们生活水平的提高,小汽车的需求量在不断增长.某厂生产小汽车两年内产量从200000辆增加到288000辆,则年平均增长率为_________
11.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请_________队参赛.
12.有一间长2
一元二次方程的解法
一元二次方程的解法 一元二次方程的解法
一、知识要点:
一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基
础,应引起同学们的重视。
一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2
的整式方程。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解
法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
二、方法、例题精讲:
1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的
方程,其解为x=m± .
例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以
此方程也可用直接开平方法解。
(1)解:(3x+1)2=7×
∴(3x+1)2=5
∴3x+1=±(注意不要丢解)
∴x=
∴原方程的解为x1=,x2=
(2)解: 9x2-24x
一元二次方程的解法及其应用
塔甸中学数学学科复习教案
上课时间:第6周 星期二2016年4月5日 第7节 备课教师:鲁崇安
课题 复 习 目 标 复习重点 复习难点 复习方法 考点9:一元二次方程的解法及其应用 1.了解一元二次方程的概念; 2.理解配方法; 3.掌握一元二次方程的解法; 4.掌握一元二次方程根的判别式;了解根与系数的关系; 5.列一元二次方程解决实际问题; 1.一元二次方程的解法;2.根的判别式;3.列一元二次方程解决实际问题; 根据方程特点,选择恰当的方法解一元二次方程; 系统复习法,讲练结合法; 1.一元二次方程:只含有个未知数,并且未知数的最高次数是的整式方程方程叫做一元二次方程.一元二次方程的一般形式是.其中叫做二次项,叫做一次项,叫做常数项;叫做二次项的系数,叫做一次项的系数. 2. 一元二次方程的常用解法:(1)直接开平方法:(2)配方法(3)公式法: 知 识 体 系 归 纳 ?b?b2?4ac2x1,2?(b?4ac?0).(4)因式分解法: 2a3. 一元二次方程根的判别式: 关于x的一元二次方程ax?bx?c?0?a?0?的根的判别式为△=. 2(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有
一元二次方程复习
用于期末复习
杨家中学2010-2011年度九年级上之一元二次方程复习
一、选择题 1.(2010江苏苏州)下列四个说法中,正确的是 A
.一元二次方程x2 4x 5
2有实数根;
B
.一元二次方程x2 4x 5 2 C
.一元二次方程x2 4x 5 3
有实数根;
D.一元二次方程x2+4x+5=a(a≥1)有实数根.
3.(2010安徽芜湖)关于x的方程(a -5)x2-4x-1=0有实数根,则a满足( )
A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5 4.
5.(10湖南益阳)一元二次方程ax2
bx c 0(a 0)有两个不相等...
的实数根,则b2
4ac满足的条件是
A.b2 4ac=0 B.b2 4ac>0 C.b2 4ac<0 D.b2 4ac≥0
6.(2010山东日照)如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是
(A)-3,2 (B)3,-2 (C)2,-3 (D)2,3 7.(2010四川眉山)已知方程x2 5x 2 0的两个解分别为x1、x
一元二次方程应用题
个性化学案 一元二次方程 适用学科 适用区域 知识点 数学 全国 适用年级 课时时长(分钟) 初中一年级 60 列方程(组)解应用题 一概述 列方程(组)解应用题是中学数学联系际的一个重要方面。其具体步骤是: ⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。 ⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。 ⑶用含未知数的代数式表示相关的量。 ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。 ⑸解方程及检验。 ⑹答案。 综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。 学习目标 (-)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题. 个性化学案 (二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力. (三)德育渗透点: