1993年数四考研真题解析

“1993年数四考研真题解析”相关的资料有哪些?“1993年数四考研真题解析”相关的范文有哪些?怎么写?下面是小编为您精心整理的“1993年数四考研真题解析”相关范文大全或资料大全,欢迎大家分享。

1993考研数四真题及解析

标签:文库时间:2025-02-16
【bwwdw.com - 博文网】

Born to win

1993年全国硕士研究生入学统一考试数学四试题

一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1) lim?1?2?n????n?1?2??(n?1)??? .

(2) 已知y?f?dy?3x?2??2则,fx?arcsinx,???dx?3x?2?? . x?0(3)

dx??2?x?1?x? .

*

(4) 设4阶方阵A的秩为2,则其伴随矩阵A的秩为 . (5) 设10件产品中有4件不合格品,从中任取两件,已知索取两件产品中有一件是不合格品,

则另一件也是不合格品的概率为 .

二、选择题(本题共5小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.)

1??xsin2,x?0,(1) 设f?x???则f?x?在点x?0处 ( ) x?? 0, x?0,(A) 极限不存在 (B) 极限存在但不连续 (C

1993考研数四真题及解析

标签:文库时间:2025-02-16
【bwwdw.com - 博文网】

Born to win

1993年全国硕士研究生入学统一考试数学四试题

一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1) lim?1?2?n????n?1?2??(n?1)??? .

(2) 已知y?f?dy?3x?2??2则,fx?arcsinx,???dx?3x?2?? . x?0(3)

dx??2?x?1?x? .

*

(4) 设4阶方阵A的秩为2,则其伴随矩阵A的秩为 . (5) 设10件产品中有4件不合格品,从中任取两件,已知索取两件产品中有一件是不合格品,

则另一件也是不合格品的概率为 .

二、选择题(本题共5小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.)

1??xsin2,x?0,(1) 设f?x???则f?x?在点x?0处 ( ) x?? 0, x?0,(A) 极限不存在 (B) 极限存在但不连续 (C

2006年数二考研真题答案解析

标签:文库时间:2025-02-16
【bwwdw.com - 博文网】

2006年硕士研究生入学考试(数学二)试题及答案解析

一、 填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)曲线

y?1x?4sinx 的水平渐近线方程为 y?.

55x?2cosx【分析】直接利用曲线的水平渐近线的定义求解即可.

4sinxx?4sinxx?1.

【详解】lim?limx??5x?2cosxx??2cosx55?x1 故曲线的水平渐近线方程为 y?.

51?(2)设函数

?1x21?3?0sintdt,x?0在x?0处连续,则a?. f(x)??x3?a,     x?0?【分析】本题为已知分段函数连续反求参数的问题.直接利用函数的连续性定义即可. 【详解】由题设知,函数

f(x)在 x?0处连续,则

limf(x)?f(0)?a,

x?0?又因为 limf(x)?limx?0x?0x0sint2dtx3sinx21?lim?. x?03x23所以

a?1. 3(3) 广义积分

???01xdx?(1?x2)22.

【分析】利用凑微分法和牛顿-莱布尼兹公式求解.

【详解】

???02bd(1+x)xdx111?lim??lim22(1?x2)22b???0(1

2006年数二考研真题答案解析

标签:文库时间:2025-02-16
【bwwdw.com - 博文网】

2006年硕士研究生入学考试(数学二)试题及答案解析

一、 填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)曲线

y?1x?4sinx 的水平渐近线方程为 y?.

55x?2cosx【分析】直接利用曲线的水平渐近线的定义求解即可.

4sinxx?4sinxx?1.

【详解】lim?limx??5x?2cosxx??2cosx55?x1 故曲线的水平渐近线方程为 y?.

51?(2)设函数

?1x21?3?0sintdt,x?0在x?0处连续,则a?. f(x)??x3?a,     x?0?【分析】本题为已知分段函数连续反求参数的问题.直接利用函数的连续性定义即可. 【详解】由题设知,函数

f(x)在 x?0处连续,则

limf(x)?f(0)?a,

x?0?又因为 limf(x)?limx?0x?0x0sint2dtx3sinx21?lim?. x?03x23所以

a?1. 3(3) 广义积分

???01xdx?(1?x2)22.

【分析】利用凑微分法和牛顿-莱布尼兹公式求解.

【详解】

???02bd(1+x)xdx111?lim??lim22(1?x2)22b???0(1

2004考研数四真题及解析

标签:文库时间:2025-02-16
【bwwdw.com - 博文网】

Born to win

2004年全国硕士研究生入学统一考试数学四试题

一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 若limsinx(cosx?b)?5,则a =

x?0ex?ax,b =.

dye2x(2) 设y?arctane?ln,则

dxe2x?1?x?1.

11?x2xe,??x??22,则2f(x?1)dx?(3) 设f(x)???121??1,x?2?.

?0?10???0?,B?P?1AP,其中P为三阶可逆矩阵, 则B2004?2A2?(4) 设A??10?00?1???(5) 设A?aij

??3?3是实正交矩阵,且a11?1,b?(1,0,0),则线性方程组Ax?b的解是

T.

(6) 设随机变量X服从参数为λ的指数分布, 则P{X?DX}?.

二、选择题:本题共8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (7) 函数f(x)?|x|sin(x?2)在下列哪个区间内有界( ) 2x(x?1)(x?2)(B) (0 , 1).

(C) (1 , 2).

(D) (2 ,

1999考研数四真题及解析

标签:文库时间:2025-02-16
【bwwdw.com - 博文网】

Born to win

1999 年全国硕士研究生入学统一考试数学四试题

一、填空题(本题共5个小题,每小题3分,满分15分。把正确答案填写在题中横线上。)

1ln[f(1)f(2)f(n)]? x??n2(2) 设f(x,y,z)?exyz2,其中z?z(x,y)是由x?y?z?xyz?0确定的隐函数,则

fx?(0,1,?1)?

(1) 设函数f(x)?ax(a?0,a?1),则lim?101???nn?1(3) 设A??020?,而n?2为整数,则A?2A?

?101????1?20???(4) 已知AB?B?A,其中???210?,则A?

?002???(5) 设随机变量X服从参数为?的泊松(Poisson)分布,且已知E[(X?1)(X?2)]?1,则??

二、选择题(本题共5小题,每小题3分,满分15分。每小题给出得四个选项中,只有一个是符合题目要求的,把所选项前的字母填在提后的括号内。)

(1) 设f(x)是连续函数,F(x)是f(x)原函数,则 ( )

(A)当f(x)是奇函数时,F(x)必是偶

2003考研数四真题及解析

标签:文库时间:2025-02-16
【bwwdw.com - 博文网】

Born to win

2003年全国硕士研究生入学统一考试数学四试题

一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 极限lim[1?ln(1?x)]=

x?02x . .

(2)

?1?1(x?x)e?xdx=

?a,若0?x?1,(3) 设a?0,f(x)?g(x)?? 而D表示全平面,则

0,其他,?I???f(x)g(y?x)dxdy=

D .

?202???(4) 设A,B均为三阶矩阵,E是三阶单位矩阵. 已知AB?2A?B, B?040,则 ????202??(A?E)?1=

.

T(5) 设n维向量??(a,0,?,0,a),a?0;E为n阶单位矩阵,矩阵

1A?E???T, B?E???T,

a其中A的逆矩阵为B,则a? .

(6) 设随机变量X 和Y的相关系数为0.5,EX?EY?0,EX?EY?2, 则

22E(X?Y)2= .

二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.

1(1) 曲线y?xex ( )

2007年考研数学(三)真题解析

标签:文库时间:2025-02-16
【bwwdw.com - 博文网】

2007年考研数学(三)真题解析

1….【分析】本题为等价无穷小的判定,利用定义或等价无穷小代换即可. 【详解】当x

0时,1

1

,1 12

2

1x, 2

故用排除法可得正确选项为(B).

事实上,lim

x 0

lim

lim 1,

x 0 x 0

或 ln(1 x) ln(1 x o(x) o o

所以应选(B)

【评注】本题为关于无穷小量比较的基本题型,利用等价无穷小代换可简化计算. 类似例题见《数学复习指南》(经济类)第一篇【例1.54】 【例1.55】.

2…….【分析】本题考查可导的极限定义及连续与可导的关系. 由于题设条件含有抽象函数,

本题最简便的方法是用赋值法求解,即取符合题设条件的特殊函数f(x)去进行判断,然后选择正确选项.

【详解】取f(x) |x|,则lim

x 0

f(x) f( x)

0,但f(x)在x 0不可导,故选(D).

x

事实上,

在(A),(B)两项中,因为分母的极限为0,所以分子的极限也必须为0,则可推得

f(0) 0.

lim在(C)中,

x 0

f(x)f(x) f(0)f(x)

lim 0,存在,则f(0) 0,f (0) lim

x 0x 0xx 0x

所以(C)项正确,故选(D)

【评注】对于题设条件含抽象函数或备选项

2015年暨南大学口腔内科学,真题解析,考研心态,考研真题,考研经验,真题解析

标签:文库时间:2025-02-16
【bwwdw.com - 博文网】

育明教育,创始于2006年,由北京大学、中国人民大学、中央财经大学、北京外国语大学的教授投资创办,并有北京大学、武汉大学、中国人民大学、北京师范大学、复旦大学、中央财经大学、等知名高校的博士和硕士加盟,是一个最具权威的全国范围内的考研考博辅导机构。

2015年暨南大学考研指导

育明教育,创始于2006年,由北京大学、中国人民大学、中央财经大学、北京外国语大学的教授投资创办,并有北京大学、武汉大学、中国人民大学、北京师范大学复旦大学、中央财经大学、等知名高校的博士和硕士加盟,是一个最具权威的全国范围内的考研考博辅导机构。更多详情可联系育明教育孙老师。

口腔内科学

口腔内科学包括牙体牙髓病学、牙周病学、口腔黏膜病学

牙体牙髓病学

(一)龋病

1.病因及其发病机制

(1)牙菌斑的结构及组成

(2)影响龋病发生和发展的有关因素

2.龋病的临床特征和诊断

3.龋病治疗

(1)窝洞制备的基本原则

(2)深龋的治疗

(3)并发症及其处理

(二)牙体硬组织非龋性疾病

1.牙结构异常

2.牙形态异常

3.牙慢性损伤

4.牙本质过敏症

(三)牙髓和根尖周病

1.牙髓、根尖周组织生理特点

2.牙髓、根尖周病的病因及发病机制

3.牙髓、根尖周病的分类

4.牙髓、根尖周病临床表现和诊断

5.牙髓、根尖周病的治疗

(1)

2015年暨南大学口腔内科学,真题解析,考研心态,考研真题,考研经验,真题解析

标签:文库时间:2025-02-16
【bwwdw.com - 博文网】

育明教育,创始于2006年,由北京大学、中国人民大学、中央财经大学、北京外国语大学的教授投资创办,并有北京大学、武汉大学、中国人民大学、北京师范大学、复旦大学、中央财经大学、等知名高校的博士和硕士加盟,是一个最具权威的全国范围内的考研考博辅导机构。

2015年暨南大学考研指导

育明教育,创始于2006年,由北京大学、中国人民大学、中央财经大学、北京外国语大学的教授投资创办,并有北京大学、武汉大学、中国人民大学、北京师范大学复旦大学、中央财经大学、等知名高校的博士和硕士加盟,是一个最具权威的全国范围内的考研考博辅导机构。更多详情可联系育明教育孙老师。

口腔内科学

口腔内科学包括牙体牙髓病学、牙周病学、口腔黏膜病学

牙体牙髓病学

(一)龋病

1.病因及其发病机制

(1)牙菌斑的结构及组成

(2)影响龋病发生和发展的有关因素

2.龋病的临床特征和诊断

3.龋病治疗

(1)窝洞制备的基本原则

(2)深龋的治疗

(3)并发症及其处理

(二)牙体硬组织非龋性疾病

1.牙结构异常

2.牙形态异常

3.牙慢性损伤

4.牙本质过敏症

(三)牙髓和根尖周病

1.牙髓、根尖周组织生理特点

2.牙髓、根尖周病的病因及发病机制

3.牙髓、根尖周病的分类

4.牙髓、根尖周病临床表现和诊断

5.牙髓、根尖周病的治疗

(1)