最值问题的实际应用
“最值问题的实际应用”相关的资料有哪些?“最值问题的实际应用”相关的范文有哪些?怎么写?下面是小编为您精心整理的“最值问题的实际应用”相关范文大全或资料大全,欢迎大家分享。
动态最值问题 - 圆内最值问题
“一师一优课”
《动态最值问题——圆内最值问题》教学设计
西安爱知中学 郭晏铖
【学情分析】
在运动变化中求最值的问题灵活性较强,涉及的知识面较广,对学生思维能力要求较高,经常令学生束手无策。因此如何正确快速的求解成为学生学习中的难点。本节课前,学生已经学习了圆的基本知识,以及点和圆、直线和圆的位置关系。四班的同学在年级中属中等偏上水平,对于基本知识的学习掌握的较快,但缺乏应用的灵活性。与圆有关的最值问题可以变零散的知识为学生整体的认识,变重复枯燥的学习为新奇有趣的探索,在训练学生逻辑思维的同时,还能培养学生的探索能力 【教学方法】
对于圆中求最值问题,学生经常感到无从下手,处理此类题目首先要明确题目中运动的对象,然后就是根据按照题目要求作出运动过程中某一时刻的图象。现在学生普遍欠缺作图能力,因此我在题目的设置上也遵循由易到难的原则,从给出图形到简单作图再到复杂作图,让学生在这个过程中体会作图的重要性。
任何运动变化问题中总隐含着定量和不变关系,这也是解决这类问题的关键。在设计时我也注重设计情境,引导学生自己挖掘题目中的信息,找到这些关键点。从例1中的定量过渡到不变的位置关系再到不变的数量关系,剥茧抽丝,层层递进,从而体会探究的乐趣。
数列的最值问题
课题: 数列中的最值问题
执 教:宋荷娟
班 级:高三(1)班 教学目标:
1.理解函数单调性与数列单调性的关系,掌握用单调性求数列最值的方法. 2.在解决问题的过程中,体会运用函数性质研究数列性质、求数列最值的方法要领.
3.在交流的过程中,分享多角度解决问题的成功经验,提高综合分析、解决问题的能力,提升数学素养.
教学重点:利用研究函数最值的方法解决数列中的最值问题. 教学难点:利用单调性解决数列中的最值问题.
教学过程:
一. 实例引入
数列作为离散函数的典型代表之一,不仅在高中数学中具有重要位置,而且,在现实生活中有着非常广泛的作用.
问题1:在一次人才招聘会上,A、B两家公司分别开出它们的工资标准:A公司允诺第一年月工资为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资为2000元,以后每年月工资在上一年的基础上递增5%。设某人年初被A,B两家公司同时录用,试问:该人在A公司工作比在B公司工作的月工资最多时可高出多少元(精确到1元)?
【设计说明】让学生在实际情境中自觉领会和发现知识的形成过程,在思维碰撞中深刻体会其蕴含的数学思想和方法.
思路分析:由题意可知,此人在A、B两公司工作的第n年月
圆中的最值问题
拔高专题 圆中的最值问题
一、基本模型构建 常见模型 图(1) 图(2) 思考 图(1)两点之间线段 最短 ; 图(2)垂线段 最短 。 .在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的 对称 点,对称点与另一点的连线与直线L的交点就是所要找的点. 二、拔高精讲精练 探究点一:点与圆上的点的距离的最值问题
例1:如图,A点是⊙O上直径MN所分的半圆的一个三等分点,B点是弧AN的中点,P点是MN上一动点,⊙O的半径为3,求AP+BP的最小值。
解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,AA′. ∵点A与A′关于MN对称,点A是半圆上的一个三等分点, ∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN的中点,
∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=3, ∴A′B=32.∵两点之间线段最短,∴PA+PB=PA′+PB=A′B=32.
【教师总结】解决此题的关键是确定点P的位置.根据轴对称和两点之间线段最短的知识,把两条线段的和转化为一条
商的近似值的实际应用教案
人教版小学数学五年级上册第二单元《解决问题》
教学内容:解决问题P33,例12 教学目标:
1.在具体的情境中,引导学生结合实际情况探索用“进一法”和“去尾法”取商的近似值。
2.在活动中,培养学生灵活解决问题的能力,体会求商的近似值的应用价值。
3.在解决问题中感受数学解题策略的巧妙运用,体验数学乐趣。
教学重点:根据实际情况,能用“进一法”和“去尾法”取商的近似值。
教学难点:培养学生灵活解决实际问题的能力。 教法设计:引导法
学法设计:自主探究,合作交流 教学流程:
一、复习导入 1.口算除法
4.5÷9 3.6÷4 0.72÷8 81÷0.9 3.5÷0.5 2.7÷0.3 5.6÷0.7 2÷0.5 2.“四舍五入”法求商的近似数
出示问题:买12个苹果花了19.4元。一个苹果大约多少钱?
1
(1)学生独立解答
(2)今天我们继续来学习跟商的近似值有关的知识,板书课题
二.探究新知
(一)学习书本P33例12(1)
1.出示书本P33例12(1):小强的妈妈要将2.5千克香油分装在一些玻璃瓶里,每个瓶最多可盛0.4千克,需要准备几个瓶?
2.学
最值问题精选试题
小升初专题:最值问题精选试题 QQ:258155493 武汉三镇奥数辅导 15337245165
最值问题精选试题
1、不能写成两个不同奇合数的和的最大偶数是多少?
2、两个四位数,每一个的各位数字互不相同,如果它们的差是1999,那么它们的和的最大值是多少?
3、某学习小组有4名女生,2名男生。在一次考试中,他们做对试题的数量各不相同,最多对10题,最少对4题;女生中做对最多的比男生做对最少的多4题,男生中做对最多的比女生中做对的最少的多4题,则男生中做对最多的人对了几题?
4、20=10+10=5+5+10=1+2+3+4+5+5=?=1+1+?+1。这说明20可用多种形式写成若干个自然数之和。在每种写法中,将这种写法所包含的所有自然数相乘,问乘积的最大值是多少?
5、连续自然数1,2,?,N(N>50)。如果从中任取50个数,都能从中找到两个数,使这两个数的差等于7。问N的最大值是多少?
6、已知算术式abcd-efgh=1996,其中abcd和efgh均为四位数;a,b,c,d,e,f,g,h是0,1,2,3,?,9中的八个不同数字。问abcd与efgh之和的最大值与最小值差是多少?
7、将分别写有数码1、2、3、4
平面几何的定值与最值问题
第二十三讲 平面几何的定值与最值问题
【趣题引路】
传说从前有一个虔诚的信徒,他是集市上的一个小贩.??每天他都要从家所在的点A出发,到集市点B,但是,到集市之前他必须先拐弯到圆形古堡朝拜阿波罗神像.古堡是座圣城,阿波罗像供奉在古堡的圆心点O,?而周围上的点都是供信徒朝拜的顶礼地点如图1.
这个信徒想,我怎样选择朝拜点,才能使从家到朝拜点,?然后再到集市的路程最短呢?
(1) (2)
解析 在圆周上选一点P,过P作⊙O的切线MN,使得∠APK=∠BPK,即α=β.那么朝圣者沿A→P→B的路线去走,距离最短.
证明 如图2,在圆周上除P点外再任选一点P′. 连结BP?′与切线MN?交于R,AR+BR>AP+BP. ∵RP′+AP′>AR.
∴AP′+BP′=AP′+RP′+RB>AR+BP>AP+BP.
不过,用尺规作图法求点P的位置至今没有解决.?“古堡朝圣问题”属于数学上“最短路线问题”,解决它的方法是采用“等角原理”.
【知识延伸】
平面几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间
线段之间的最值问题6
浅谈初中数学线段之和最值问题
近年来,在全国各地出现的中考试题的平面几何最值问题中,呈现出变化多、涉及面广、形式灵活的景象,对学生来讲是个难点;如果深入思考,可以发现:这类试题的命制都是立足于教材,解决途径都是运用转化的思想“化折为直”。本文中,笔者根据近几年的中考试题,结合浙教版教材和自己的教学体会,谈谈初中数学中求线段之和最值的求解策略。
1.直接应用定(公)理求最值
平面几何解决最短线路问题时常用的公理(定理):①两点之间线段最短.②三角形的两边之和大于第三边, 两边之差小于第三边(②是由①得出);③直线外一点到直线的所有线段中垂线段最短.
1.1应用两点之间线段最短
教材链接:七上7.3线段的长短作业题: D如图,A、B、C、D表示4个村庄.村民们准备合打一口水井,(1)略(2)你能给出一中使水井到各村庄的距离之和最小的方案吗?若能,请标出水井的位置,并说明理由. A 解题分析:
教材作业题中,因点D与点B、点A与点C是定点,当水井打在AC与BD的交点时,水井到各村庄的距离之和最小,直接利用“两点之间线段最短”的原理。
中考链接:(2009山东潍坊)已知边长为a的正三角形ABC(一象限),两顶点A,B分别在平面直角坐标系的x轴,y轴的
初中数学“最值问题”_集锦
“最值问题” 集锦
●平面几何中的最值问题………………… 01 ●几何的定值与最值……………………… 07 ●最短路线问题…………………………… 14 ●对称问题………………………………… 18 ●巧作“对称点”妙解最值题…………… 22 ●数学最值题的常用解法………………… 26 ●求最值问题……………………………… 29 ●有理数的一题多解……………………… 34 ●4道经典题……………………………… 37
●平面几何中的最值问题
在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例.
在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1) 应用几何性质:
① 三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ② 两点间线段最短;
③ 连结直线外一点和直线上各点的所有线段中,垂线段最短; ④ 定圆中的所有弦中,直径
圆最值问题题型归纳
圆中最值问题
类型一 圆上一点到直线距离的最值问题
22(x?3)?y?1上任一点,则PQ的最小例1 已知P为直线y=x+1上任一点,Q为圆C:
值为 .
变题1:已知A(0,1),B(2,3),Q为圆C(x?3)2?y2?1上任一点,则SVQAB的最小值为 .
变题2:由直线y=x+1上一点向圆C:(x?3)2?y2?1引切线,则切线长的最小值为
变题3:已知P为直线y=x+1上一动点,过P作圆C:(x?3)2?y2?1的切线PA,PB,A、B为切点,则当PC= 时,?APB最大.
变题4:已知P为直线y=x+1上一动点,过P作圆C:(x?3)2?y2?1的切线PA,PB,A、B为切点,则四边形PACB面积的最小值为 .
例2已知圆C:x2?y2?2x?4y?3?0,从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有PM=PO,求使得PM取得最小值的点P坐标.
y C O x
类型二 利用圆的参数方程求最值(或几何意义)
例3若实数x、y满足x2?y2?2x?4y?0,求x-2y的最大值. 如在上例中,改为求
y?1,(
北京中考几何最值问题
几何最值问题
例题精讲
板块一、点到直线的距离最短
【例1】 o的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为
板块二、两点之间,线段最短
常见题型是在立体图形中求最小值,一般方法为把立体图形展开成平面图形,再根据两点间线段最短
【例2】 如图有一个圆柱体礼盒,高为10cm,底面直径为102cm,彩带从A点出发绕礼盒
侧面两周后粘贴在B出,则彩带的最短长度为
【例3】 如图,有一个长方体,它的长BC?4,宽AB?3,高BB1?5,一只小虫由A处出发,
沿长方体表面爬行到C1,这时小虫爬行的最短路径的长度是
D'C'A'B'DC
【例4】 如图所示,圆锥的母线长OA?6,底面圆的半径为2,一小虫在圆锥底面的点A处绕
圆锥侧面一周又回到点A处,则小虫所走的最短距离为
【例5】 如图所示,有一圆锥型粮堆,其主视图是边长为6m的正三角形△ABC,母线AC的
中点P处有一老鼠正在偷吃粮食,小猫从B点处沿圆锥表面去偷袭老鼠,则小猫经过的最短路程是
MSDC模块化分级讲义体系
初中数学.几何最值A级).几何最值的复习.教师版
Page 1 of 9
AB
OAPABC板块