气液相平衡计算公式
“气液相平衡计算公式”相关的资料有哪些?“气液相平衡计算公式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“气液相平衡计算公式”相关范文大全或资料大全,欢迎大家分享。
气液相平衡关系
河北化工医药职业技术学院教案
二、气液相平衡关系
平衡状态:在一定压力和温度下,当吸收和解吸速率相等时,气液两相达到平衡。 相平衡关系:吸收过程中气液两相达到平衡时,吸收质在气相和液相中的浓度关系 1.气体在液体中的溶解度 (图8-1)
平衡时溶质在气相中的分压称为平衡分压,用符号pA表示;溶质在液相中的浓度称为平衡溶解度,简称溶解度;它们之间的关系称为相平衡关系。
结论:①在相同的吸收剂、温度和分压下,不同溶质的溶解度不同;②分压一定时,温度越低,则溶解度越大。较低的温度有利于吸收操作;③温度T一定时,分压P越大,溶解度越大。较高的分压有利于吸收操作;④加压和降温对吸收操作有利。 2.亨利定律 (1)亨利定律
亨利定律内容:在总压不太高,温度一定的条件下,稀溶液上方溶剂的平衡分压pA与溶质在液相中的摩尔分数xA成正比,比例系数为亨利系数E。
即: pA?ExA 形式一 E——亨利系数, Pa
讨论:①E的来源:实验测得,查手册
②E的影响因素:溶质、溶剂、T。物系一定时, T??E?③亨利系数表示气体溶解的难易程度。E大的,溶解度小,难溶气体;E小的,溶解度大,易溶气体。 (2)亨利定律的其它形式
① 溶质在液相中的浓
气液相平衡实验装置
二元气液相平衡数据的测定实验装置(HD-QY)——实验指导书
二元气液相平衡数据的测定实验装置
实验指导书
第 1 页 共 7页 浙江中控科教仪器设备有限公司
二元气液相平衡数据的测定实验装置(HD-QY)——实验指导书
二元气液相平衡数据的测定
气液相平衡关系是精馏、吸收等单元操作的基础数据。随着化工生产的不断发展,现有气液平衡数据远不能满足需要。许多物质的平衡数据很难由理论计算直接得到,必须由实验测定。在热力学研究方面,新的热力学模型的开发,各种热力学模型的比较筛选等也离不开大量精确的汽液平衡实测数据。现在,各类化工杂志每年都有大量的汽液平衡数据及汽液平衡测定研究的文章发表。所以,汽液平衡数据的测定及研究深受化工界人士的重视。
一、实验目的
1.测定乙醇-水二元体系在101.325kPa下的气液平衡数据。
2.通过实验了解平衡釜的构造,掌握气液平衡数据的测定方法和技能。 3.应用Wilson方程关联实验数据。
二、汽液平衡测定的种类
由于汽液平衡体系的复杂性及汽液平衡测定技术的不断发展,汽液平衡测定也形成了特点各异的不同种类。
按压力分,有常减压汽液平衡和高压汽液平衡。高压汽液平衡测定的技术相对比较复杂,难度较大。常减压汽液平衡测定相对较
高效液相计算公式-双对照分别计算
高效液相计算公式,只需要将数据和稀释倍数填写到表格红色区域就可自动计算,结果自动修约(四舍六入)。彻底摆脱按错计算器的郁闷
盐酸麻黄碱:
AAMM
对样对样
::::
525598对照品含量:107268
0.00545样品含量(干燥品):5.0065样品平均装量(m平均):
100.0%
10.3078
A样 *
M对 * 对照品含量 M样 * 样品含量(干燥品)
计算公式=
A对 *
g 换算成 mg :
=3.41914E-05=0.034191439
99.9%
10.3078
A样 *
M对 * 对照品含量 M样 * 样品含量(干燥品)
盐酸伪麻黄碱:
AAMM
对样对样
::::
350455对照品含量:41204
0.00356样品含量(干燥品):5.0665样品平均装量(m平均):
计算公式=
A对 *
g 换算成 mg :总量:
=1.27014E-05=0.012701446
0.046892885
高效液相计算公式,只需要将数据和稀释倍数填写到表格红色区域就可自动计算,结果自动修约(四舍六入)。彻底摆脱按错计算器的郁闷
*稀释倍数:(*稀释倍数:(
11001100
**
51011
**
1111
**
1111
)
* )
m
平均
*稀释倍数:(*稀释倍数:(
11001100
**
51011
**
相平衡
第六章 习题解答
6.1 指出下列平衡系统中的组分数C,相数P,及自由度数F。 (1) I2(S)与其蒸气成平衡;
(2) CaCO3(s)与其分解产物CaO(s)和CO2(g)成平衡;
(3) NH4HS(s)放入一抽空的容器中,并与其分解产物NH3(g)和H2S(g)成平衡; (4) 取任意量的NH3(g)和H2S(g)与NH4HS(s)成平衡;
(5) I2作为溶质在两不互溶液体H2O和CCl4中达到分配平衡(凝聚系统)。
解:(1)C=1;P=2;F=1-2+2=1
(2)C=2;(∵S=3;R=1,∴C=3-1=2);P=3;F=2-3+2=1
(3)C=S-R-R'=3-1-1=1(浓度限制条件,产物成NH3(g):H2S(g)=1:1);P=2; F=1
(4)C=3-1=2;P=2;F=2
(5)C=3;P=2;F=C-P+1=3-2+1=2 (凝聚相可以不考虑压力的影响)
6.2 已知液体甲苯(A)和液体(B)在90℃时的饱和蒸气压分别为PA=54.22kPa和PB=136.12kPa。两者可形成理想液态混合物。
今有系统组成为xB,0=0.3的甲苯-苯混合物5mol
双液系的气-液平衡相图
双液系的气-液平衡相图
一、实验目的
1. 掌握采用阿贝折光率仪确定二元液体组成的方法; 2. 掌握测定双组份液体的沸点及正常沸点的方法; 3. 绘制在恒压下环己烷-乙醇双液系的气-液平衡相图。
二、实验原理
两种液态的物质混合而成的二组分体系称为双液系。它可以分为完全互溶和部分互溶的双液系。体系的沸点不仅与外压有关,而且与双液系的组成有关。在恒压下做温度T对组成x的关系图即为T-x图。
由相律可知,对于双液系在恒压下气-液两相共存区域中,自由度为1。当温度一定时,气-液两相的相对组成也就有了确定值。根据杠杆原理,两相的相对量也确定了。因此实验测定一系列不同组成的双液系溶液的气-液相平衡时的沸点及此时气相和液相的组成,即可得T-x图。因此双液系气-液平衡相图实验主体上包括一系列混合体系的沸点测定和气-液相组成分析两个主要内容。
体系的沸点可用沸点仪测定的,其构造如图7.2所示。采用电热丝直接加热溶液,以防止过热现象,同时该沸点仪用平衡蒸馏法分离气液两相,具有可便于取样分析及避免分馏等优点。
体系的气液相组成的分析是相图绘制的另一核心,可以根据待测体系的理化性质寻找多种合适的分析方法。以完全互溶双液系环己烷-乙醇体系为例。由于环己烷和乙醇两者的
统计计算公式
公式名称次数密度 组距
数学公式各组次数/组距 (最大值-最小值)/组数 全距/1+3.322*lgN 全距/组数 (上限+下限)/2 上限-相邻组的组距/2 下限+相邻组的组距/2x
说明
字母含义
组中值
开口组只有上限 开口组只有下限 简单x x n f
n
x
算术平均数x
xf fn
加权
:平均数 :单位变量值 :总体单位数 :权数
H
调和平均数H
1 x
简单
m 1 x *m
加权
H :平均数 x :单位变量值 n :总体单位数 m :权数
G
n
几何平均数G f
f
x xf
简单 加权
G :平均数 n :项数
:连乘
Me
L
2
s m 1 *d fm
下限公式
中位数
Me
f
U
2
sm 1 *d fm
上限公式
计数 中位数所在后各组累计 s m 1 : 数 f m :中位数所在组的次数 d :中位数所在组的组距M o :众数 L :中位数所在的下限 U :中位数所在的上限 1 :众数所在组的次数与前一组
M e :中位数 L :中位数所在的下限 L :中位数所在的下限 U :中位数所在的上限 中位数所在组前各组累 s m 1 :
M
o
L
1 1 2 2 1 2
*d
下限公
超高计算公式
路线平曲线小于600m时,在曲线上设置超高。超高方式为,整体式路基采用绕路基中线旋转。 超高设计和计算
3.6.1确定路拱及路肩横坡度:
为了利于路面横向排水,应在路面横向设置路拱。按工程技术标准,采用折线形路拱,路拱横坡度为2%。由于土路肩的排水性远低于路面,其横坡度一般应比路面大1%~2%,故土路肩横坡度取3%。 3.6.2超高横坡度的确定:
为抵消车辆在曲线路段上行驶时所产生的离心力,当平曲线半径小于不设高的最小半径值时,应在路面上设置超高,而当平曲线半径大于不设超高时的最小半径时,即可不设超高。拟建公路为山岭重丘区三级公路,设计行车速度为40km/小时。按各平曲线所采用的半径不同,对应的超高值如表: 表3-1 圆曲线半径与超高 表3-1 圆曲线半径(m) 超高值(%) 圆曲线半径(m) 超高值(%) 600~390 1 150~120 5 390~270 2 120~90 6 270~200 3 90~60 7 200~150 4 当按平曲线
曲线计算公式
一、曲线要素计算
已知:JDZH、JDX、JDY、R、LS1、LS2、LH、T、A1、A2(LH=LS1+LS2+圆曲线长)
1、求ZH点(或ZY点)坐标及方位角
L?DZH?ZHZHx?L?L5/(40R2ls1)y?L3/(6Rls1)?T?A1?i?l2/(2Rls1)?180/???DX?ZHX?xcosA1?i?ysinA1?DY?ZHY?xsinA?i?ycosA11?
2中桩距离,左正右负)
?ZHZH?JDZH?T??ZHX?JDX?TcosA1 ?ZHY?JDY?TsinA1?2、求HZ点(或YZ点)坐标及方位角
?T?T????BDX?X?NcosT ?BDY?Y?NsinT?七、纵断面高程计算
(1) 直线段上高程计算 已知:直线上任一点桩号(ZH)、高程(H)、纵坡(i)
DH?H?i*(DZH?ZH)
(2) 竖曲线上高程计算
已知:竖曲线起点桩号(ZH)、起点高程(H)、竖曲线半径R、起点坡度(i)、k(凸曲线+1、凹曲线-1)
?HZZH?JDZH?T?LH??HZX?JDX?TcosA2 ?HZY?JDY?TsinA2?3、求解切线长T、外距E、曲线长L
(1)圆曲线
四、圆曲线上各桩号点坐标及
计算公式汇总
第二章 预算管理
第三节 预算编制
(目标利润预算方法)
1.量本利分析法
量本利分析法是根据有关产品的产销数量、销售价格、变动成本和固定成本等因素与利润之间的相互关系确定企业目标利润的方法。
(1)基本公式
目标利润=预计产品产销数量×(单位产品售价-单位产品变动成本)- 固定成本费用
利润=销售收入-变动成本-固定成本
=单价×销量-单位变动成本×销量-固定成本 =P×Q-V×Q-F =(P-V)×Q-F
2.比例预算法
比例预算法是利用利润指标与其他经济指标之间存在的内在比例关系,来确定目标利润的方法。 (1)基本公式
具体方法 基本公式 (1)销售收入利润率法标利润 =预计销售收入×测算的销售利润率 (2)成本利润率法标 利润=预计营业成本费用×核定的成本费用利润率 (3)投资资本回报率法标利润 =预计投资资本平均总额×核定的投资资本回报率 (4)利润增长百分比法标利润 =上年利润总额×(1+利润增长百分比)
3. 上加法
它是企业根据自身发展、不断积累和提高股东分红水平等需要,匡算企业净利润,预算利润总额(及目标利润)的方法。
(1)基本公式
企业留存收益=盈余公积金+未分配利润
净利润= 目标
负荷计算公式
2.1 围护结构冷负荷计算
2.1.1 屋面和外墙逐时传热形成的冷负荷
在日射和室外气温综合作用下,外墙和屋面的瞬时冷负荷按下式计算:
Qc(t)=AK(t′c(t)- tR) t′c (t)=(tc(t)+ △td)ka*kp (2-1)
式中:
A:房面、外墙的面积,㎡;
K:房面外墙传热系数,W/㎡.℃;
tc(t):房顶冷负荷计算温度逐时温度,℃,; tR:室内计算温度 ,℃;
ka:放热系数修正值; kp:吸收系数修正值。
2.1.2 玻璃幕墙、玻璃外门及外窗瞬时传热形成的冷负荷
在室内外温差作用下,通过外玻璃窗瞬变传热引起的冷负荷可按下式计算:
Qc(t)=CWAwKw(tc(t)+△td-tR) (2-2)
式中:
Aw:窗口面积,㎡;
Kw:外玻璃窗传热系数,w/㎡.℃;
tc(t):外玻璃窗的冷负荷温度的逐时值,℃; tR:室内计算温度 ,℃;
CW :窗框修正值。
2.1.3 透过玻璃进入室内日射得热引起的冷负荷 透过玻璃窗进入日射得热形成的逐时冷负荷按下式计算:
Qc(t)=CaAwCsCi Dj.maxCLQ