小学奥数几何计数课件
“小学奥数几何计数课件”相关的资料有哪些?“小学奥数几何计数课件”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学奥数几何计数课件”相关范文大全或资料大全,欢迎大家分享。
小学奥数几何计数
小学奥数几何计数
一、知识点
(1)分类:数图形、数角、数长方形、数正方形、数三角形、数综合图形等。 (2)方法:①基本图形法(一个基本图形、二个基本图形、三个基本图形。。。)
②标号计数法 ③公式法
注:基本图形法与标号计数法均为列举法。 (3)特殊:长方形个数=长边总线段数×宽边总线段数
正方形个数=a×b+(a-1)×(b-1)+(a-2)×(a-2)+…. 注:总线段数、a与b表示的是基本图形数
二、基础题
1、数出右图中总共有多少个角
2、下列图形各有几条线段
3、数一数图中长方形的个数
4、数一数共有多少条线段?共有多少个三角形?
5、数一数图中有多少个正方形(其中每个小方格都是边长为1个长度单位的正
方形)
6、数一数图中三角形的个数
三、巩固题
1、共有多少个三角形?
2、数一数图中三角形的个数
3、下图共有几个正方形?
4、右图的图形中一共有多少个三角形?
5、一条直线上共有50个点,可以数出(
小学奥数 几何计数 专题
几何计数
知识框架图 7 计数综合
7-8 几何计数
教学目标
1.掌握计数常用方法;
2.熟记一些计数公式及其推导方法; 3.根据不同题目灵活运用计数方法进行计数.
本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.
知识要点
一、几何计数
在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n条直线最多将平面分成
2?2?3?……?n?12(n?n?2)个部分;n个圆最多分平面的部分数为n(n-1)+2;n个三角形将平面最多分2成3n(n-1)+2部分;n个四边形将平面最多分成4n(n-1)+2部分……
在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.
排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.
二、几何计数分类
数线段:如果一
小学奥数可以分为计算、计数、数论、几何、
小学奥数可以分为计算、计数、数论、几何、应用题、行程、组合七大板块,其中必须掌握的三十六个知识点,内容从和差倍问题、年龄问题到循环小数,包含了小学奥数七个模块的知识。 以下是小学奥数知识清单:
2、年龄问题的三个基本特征: ①两个人的年龄差是不变的;
②两个人的年龄是同时增加或者同时减少的; ③两个人的年龄的倍数是发生变化的;
3、归一问题
基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;
5、鸡兔同笼问题
基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来; 基本思路:
①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样): ②假设后,发生了和题目条件不同的差,找出这个差是多少; ③每个事物造成的差是固定的,从而找出出现这个差的原因; ④再根据这两个差作适当的调整,消去出现的差。 基本公式:
①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数) ②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数) 关键问题:找出总量的差与单位量的差。
6、盈亏问题
基本概念:一定量
小学奥数第44讲 几何图形的计数(含解题思路)
44、几何图形的计数
【点与线的计数】
例1如图5.45,每相邻的三个圆点组成一个小三角形,问:图中是这样的小三解形个数多还是圆点的个数多?
(全国第二届“华杯赛”决赛试题) 讲析:可用“分组对应法”来计数。
将每一排三角形个数与它的下行线进行对应比较。第一排三角形有1个,其下行线有2点;
第二排三角形有3个,其下行线有3点; 第三排三角形有5个,其下行线有4点; 以后每排三角形个数都比它的下行线上的点多。 所以是小三角形个数多。
例2 直线m上有4个点,直线n上有5个点。以这些点为顶点可以组成多少个三角形? (如图5.46)
(哈尔滨市第十一届小学数学竞赛试题)
讲析:本题只要数出各直线上有多少条线段,问题就好解决了。
直线n上有5个点,这5点共可以组成4+3+2+1=10(条)线段。以这些线段分别为底边,m上的点为顶点,共可以组成4×10=40(个)三角形。 同理,m上4个点可以组成6条线段。以它们为底边,以n上的点为顶点可以组成6×5=30(个)三角形。 所以,一共可以组成70个三角形。 【长方形与三角形的计数】
例1图5.47中的正方形被分成9个相同的小正方形,它们一共有
奥数:小学奥数系列:第5讲 数数与计数3
奥数精品
【例1】
小朋友,张开手,五个手指人人有。手指之间几个“空”,请你仔细瞅一瞅? (注)“瞅一瞅”就是“看一看”的意思。 解:见右图看一看、数一数 可知:5个手指间有4 个“空”。“空”又叫 “间隔”,也就是,人的 一只手有5个手指4个 间隔。
【例2】小朋友在一段马路的一边种树。每隔1米种一棵,共种了11棵,问这段马路有多长?
解:画示意图如下:
由图可见,这段马路的11棵树之间有10个“空”,也就是10个间隔。每个间隔长1米,10个间隔长10米。也就是说这段马路长10米。像这类问题一般叫做“植树问题”。可以得出一个公式:当两头都种树时:
【例3】把一根粗细一样的木头锯成5段,需要4分钟。 ①如果把这根木头锯成lO段,需要几分钟? ②如果把这根木头锯成100段,需要几分钟?
解:_画出示意图:
由图可见,把木头锯成5段,只需要锯4次。所以锯一次需1分钟。 ①同样道理,把这根木头锯成10段,只需锯9次,所以需9分钟。 ②同理,把这根木头锯成100段,只需锯99次,所以需99分钟。
【例4】鼓楼的钟打点报时,5点钟打5下需要4秒钟。问中午12点时打12
奥数:小学奥数系列:第5讲 数数与计数3
奥数精品
【例1】
小朋友,张开手,五个手指人人有。手指之间几个“空”,请你仔细瞅一瞅? (注)“瞅一瞅”就是“看一看”的意思。 解:见右图看一看、数一数 可知:5个手指间有4 个“空”。“空”又叫 “间隔”,也就是,人的 一只手有5个手指4个 间隔。
【例2】小朋友在一段马路的一边种树。每隔1米种一棵,共种了11棵,问这段马路有多长?
解:画示意图如下:
由图可见,这段马路的11棵树之间有10个“空”,也就是10个间隔。每个间隔长1米,10个间隔长10米。也就是说这段马路长10米。像这类问题一般叫做“植树问题”。可以得出一个公式:当两头都种树时:
【例3】把一根粗细一样的木头锯成5段,需要4分钟。 ①如果把这根木头锯成lO段,需要几分钟? ②如果把这根木头锯成100段,需要几分钟?
解:_画出示意图:
由图可见,把木头锯成5段,只需要锯4次。所以锯一次需1分钟。 ①同样道理,把这根木头锯成10段,只需锯9次,所以需9分钟。 ②同理,把这根木头锯成100段,只需锯99次,所以需99分钟。
【例4】鼓楼的钟打点报时,5点钟打5下需要4秒钟。问中午12点时打12
小学奥数:几何图形大全
“知行”辅导 知识改变命运,行动成就人生
几何图形综合
1.如图,四边形ABCD是直角梯形.其中AD=12(厘米),AB=8(厘米),BC=15(厘
米),且△ADE,四边形DEBF,△CDF的面积相等. D A 阴影△DEF的面积是多少平方厘米? E C F B 2.如图,长方形ABCD的面积是96平方厘米,E是AD边上靠近D点的三等分点,F是CD边上靠近C点的四等分点.阴影部分的面积是多少平方厘米?
A E D
F
B C
3.如图,把一个正方形的两边分别增加3和5厘米,结果面积增加了71平方厘米(阴影部分).原正方形的面积为多少平方厘米?
4.如图,把一个正方形的相邻两边分别减少2厘米和4厘米,结果面积减少了46平方厘米(阴影部分).原正方形的面积为多少平方厘米?
5.如图,在△ABC中,AD的长度是AB的四分之三,AE的长度是 A AC的三分之二.请问:△ADE的面积是△ABC面积的几分之几?
D E
B C
A6.如
小学奥数几何之蝴蝶定理
几何之蝴蝶定理
一、 基本知识点
定理1:同一三角形中,两个三角形的高相等,则面积之比 等于对应底边之比。
S1 : S2 = a : b
定理2:等分点结论( 鸟头定理)
如图,三角形△AED的面积占三角形△ABC的面积的
313?? 5420
定理3:任意四边形中的比例关系( 蝴蝶定理)
1) S1∶S2 =S4∶S3 或 S1×S3 = S2×S4
上、下部分的面积之积等于左、右部分的面积之积
2)AO∶OC = (S1+S2)∶(S4+S3)
梯形中的比例关系( 梯形蝴蝶定理)
1)S1∶S3 =a2∶b2
上、下部分的面积比等于上、下边的平方比
2)左、右部分的面积相等
3)S1∶S3∶S2∶S4 =a2∶b2 ∶ab∶ab
4)S的对应份数为(a+b)2
定理4:相似三
小学数学几何专题(奥数)一十归总
小学几何面积问题一
姓名
引理:如图1在 ABCD中。P是AD上一点,连接PB,PC则S△PBC=S△ABP+S△pcD=
P
A D (适应长方形、正方形)
A P D A
P D
1S ABCD 2 B
图1
C B C B
C
1.已知:四边形ABCD为平行四边形,图中的阴影部份面积占平行四边形ABCD的面积的几分之几?
P M
A D
B N C
2. 已知: ABCD的面积为18,E是PC的中点,求图中的阴影部份面积 A P B E
经典小学奥数题型(几何图形)
小学奥数平面几何五种模型(等积,鸟头,蝶形,相似,共边)
目标:熟练掌握五大面积模型等积,鸟头,蝶形,相似(含金字塔模型和沙漏模型),共边(含燕尾模型和风筝模型), 掌握五大面积模型的各种变形 知识点拨
一、等积模型
AB①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; SS两个三角形底相等,面积比等于它们的高之比;
abCD如右图S1:S2?a:b
12③夹在一组平行线之间的等积变形,如右图S△ACD?S△BCD; 反之,如果S△ACD?S△BCD,则可知直线AB平行于CD.
④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);
⑤三角形面积等于与它等底等高的平行四边形面积的一半;
⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、鸟头定理
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.
D,E分别是AB,AC上的点如图 ⑴(或D在BA的延长线上,如图在△ABC中,E在
AC上),
则S△ABC:S△ADE?(AB?AC):(AD?AE)
DAADEEDC